RESUMO
Chemical and surface analyses are carried out using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM-EDS), atomic force microscopy (AFM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS) and extracellular surface protein quantification to thoroughly investigate the effect of supplementary As(V) during biooxidation of arsenopyrite by Acidithiobacillus thiooxidans. It is revealed that arsenic can enhance bacterial reactions during bioleaching, which can strongly influence its mobility. Biofilms occur as compact-flattened microcolonies, being progressively covered by a significant amount of secondary compounds (S n2- , S0, pyrite-like). Biooxidation mechanism is modified in the presence of supplementary As(V), as indicated by spectroscopic and microscopic studies. GDS confirms significant variations between abiotic control and biooxidized arsenopyrite in terms of surface reactivity and amount of secondary compounds with and without As(V) (i.e. 6 µm depth). CLSM and protein analyses indicate a rapid modification in biofilm from hydrophilic to hydrophobic character (i.e. 1-12 h), in spite of the decrease in extracellular surface proteins in the presence of supplementary As(V) (i.e. stressed biofilms).
Assuntos
Acidithiobacillus thiooxidans/metabolismo , Arsenicais/química , Biofilmes , Compostos de Ferro/química , Ferro/química , Minerais/química , Sulfetos/química , Arsênio/química , Interações Hidrofóbicas e Hidrofílicas , Microbiologia Industrial , Microscopia Confocal , Microscopia Eletrônica de Varredura , Oxigênio/química , Espectrofotometria , Análise Espectral Raman , Propriedades de SuperfícieRESUMO
A biofilm is a very complex consortium formed by a mix of different microorganisms, which have become an important health problem, because its formation is a resistance mechanism used by bacteria against antibiotics or the immune system. In this work, we show differences between some physicochemical properties of biofilms in mono- and multi-species, formed by bacteria from clinical samples of infected chronic wounds. Of the most prevalent bacteria in wounds, two mono- and one multi-species biofilms were developed in vitro by Drip Flow Reactor: one biofilm was developed by S. aureus, other by P. aeruginosa, and a third one by the mix of both strains. With these biofilms, we determined microbial growth by plate counting, and their physicochemical characterization by Atomic Force Microscopy, Raman Micro-Spectroscopy and Scanning Electron Microscopy. We found that the viability of S. aureus was less than P. aeruginosa in multi-species biofilm. However, the adhesion force of S. aureus is much higher than that of P. aeruginosa, but it decreased while that of P. aeruginosa increased in the multi-species biofilm. In addition, we found free pyrimidines functional groups in the P. aeruginosa biofilm and its mix with S. aureus. Surprisingly, each bacterium alone formed single layer biofilms, while the mix bacteria formed a multilayer biofilm at the same observation time. Our results show the necessity to evaluate biofilms from clinically isolated strains and have a better understanding of the adhesion forces of bacteria in biofilm multispecies, which could be of prime importance in developing more effective treatments against biofilm formation.
Assuntos
Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/crescimento & desenvolvimento , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Positivas/fisiologia , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Dermatopatias/microbiologia , Dermatopatias/patologia , Análise Espectral RamanRESUMO
Biofilm formation and evolution are key factors to consider to better understand the kinetics of arsenopyrite biooxidation. Chemical and surface analyses were carried out using Raman spectroscopy, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS), and protein analysis (i.e., quantification) in order to evaluate the formation of intermediate secondary compounds and any significant changes arising in the biofilm structure of Acidithiobacillus thiooxidans during a 120-h period of biooxidation. Results show that the biofilm first evolves from a low cell density structure (1 to 12 h) into a formation of microcolonies (24 to 120 h) and then finally becomes enclosed by a secondary compound matrix that includes pyrite (FeS2)-like, S n2-/S0, and As2S3 compounds, as shown by Raman and SEM-EDS. GDS analyses (concentration-depth profiles, i.e., 12 h) indicate significant differences for depth speciation between abiotic control and biooxidized surfaces, thus providing a quantitative assessment of surface-bulk changes across samples (i.e. reactivity and /or structure-activity relationship). Respectively, quantitative protein analyses and CLSM analyses suggest variations in the type of extracellular protein expressed and changes in the biofilm structure from hydrophilic (i.e., exopolysaccharides) to hydrophobic (i.e., lipids) due to arsenopyrite and cell interactions during the 120-h period of biooxidation. We suggest feasible environmental and industrial implications for arsenopyrite biooxidation based on the findings of this study.
Assuntos
Acidithiobacillus thiooxidans/efeitos dos fármacos , Arsenicais/metabolismo , Biofilmes/efeitos dos fármacos , Compostos de Ferro/metabolismo , Minerais/metabolismo , Sulfetos/metabolismo , Poluentes Químicos da Água/metabolismo , Acidithiobacillus thiooxidans/crescimento & desenvolvimento , Biodegradação Ambiental , Biofilmes/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Compostos de Ferro/toxicidade , Microscopia Confocal , Microscopia Eletrônica de Varredura , Minerais/toxicidade , Oxirredução , Análise Espectral Raman , Sulfetos/toxicidade , Poluentes Químicos da Água/toxicidadeRESUMO
Bioleaching of arsenopyrite presents a great interest due to recovery of valuable metals and environmental issues. The current study aims to evaluate the arsenopyrite oxidation by Acidithiobacillus thiooxidans during 240h at different time intervals, in the presence and absence of supplementary arsenic. Chemical and electrochemical characterizations are carried out using Raman, AFM, SEM-EDS, Cyclic Voltammetry, EIS, electrophoretic and adhesion forces to comprehensively assess the surface behavior and biooxidation mechanism of this mineral. These analyses evidence the formation of pyrite-like secondary phase on abiotic control surfaces, which contrast with the formation of pyrite (FeS2)-like, orpiment (As2S3)-like and elementary sulfur and polysulfide (Sn(2-)/S(0)) phases found on biooxidized surfaces. Voltammetric results indicate a significant alteration of arsenopyrite due to (bio)oxidation. Resistive processes determined with EIS are associated with chemical and electrochemical reactions mediated by (bio)oxidation, resulting in the transformation of arsenopyrite surface and biofilm direct attachment. Charge transfer resistance is increased when (bio)oxidation is performed in the presence of supplementary arsenic, in comparison with lowered abiotic control resistances obtained in its absence; reinforcing the idea that more stable surface products are generated when As(V) is in the system. Biofilm structure is mainly comprised of micro-colonies, progressively enclosed in secondary compounds. A more compact biofilm structure with enhanced formation of secondary compounds is identified in the presence of supplementary arsenic, whereby variable arsenopyrite reactivity is linked and attributed to these secondary compounds, including Sn(2-)/S(0), pyrite-like and orpiment-like phases.
Assuntos
Acidithiobacillus thiooxidans/fisiologia , Arsênio/química , Arsenicais/metabolismo , Biofilmes , Compostos de Ferro/metabolismo , Minerais/metabolismo , Sulfetos/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Oxirredução , Fatores de TempoRESUMO
We have applied epifluorescence principles, atomic force microscopy, and Raman studies to the analysis of the colonization process of pyrite (FeS(2)) by sulfuroxidizing bacteria Acidithiobacillus thiooxidans after 1, 15, 24, and 72 h. For the stages examined, we present results comprising the evolution of biofilms, speciation of S (n) (2-) /S(0) species, adhesion forces of attached cells, production and secretion of extracellular polymeric substances (EPS), and its biochemical composition. After 1 h, highly dispersed attached cells in the surface of the mineral were observed. The results suggest initial non-covalent, weak interactions (e.g., van der Waal's, hydrophobic interactions), mediating an irreversible binding mechanism to electrooxidized massive pyrite electrode (eMPE), wherein the initial production of EPS by individual cells is determinant. The mineral surface reached its maximum cell cover between 15 to 24 h. Longer biooxidation times resulted in the progressive biofilm reduction on the mineral surface. Quantification of attached cell adhesion forces indicated a strong initial mechanism (8.4 nN), whereas subsequent stages of mineral colonization indicated stability of biofilms and of the adhesion force to an average of 4.2 nN. A variable EPS (polysaccharides, lipids, and proteins) secretion at all stages was found; thus, different architectural conformation of the biofilms was observed during 120 h. The main EPS produced were lipopolysaccharides which may increase the hydrophobicity of A. thiooxidans biofilms. The highest amount of lipopolysaccharides occurred between 15-72 h. In contrast with abiotic surfaces, the progressive depletion of S (n) (2-) /S(0) was observed on biotic eMPE surfaces, indicating consumption of surface sulfur species. All observations indicated a dynamic biooxidation mechanism of pyrite by A. thiooxidans, where the biofilms stability and composition seems to occur independently from surface sulfur species depletion.
Assuntos
Acidithiobacillus thiooxidans/fisiologia , Biofilmes/crescimento & desenvolvimento , Ferro/metabolismo , Sulfetos/metabolismo , Acidithiobacillus thiooxidans/crescimento & desenvolvimento , Aderência Bacteriana , Microscopia de Força Atômica , Microscopia de Fluorescência , Polissacarídeos Bacterianos/metabolismo , Análise Espectral Raman , Fatores de TempoRESUMO
Massive pyrite (FeS2) electrodes were potentiostatically modified by means of variable oxidation pulse to induce formation of diverse surface sulfur species (S(n)²â», S°). The evolution of reactivity of the resulting surfaces considers transition from passive (e.g., Fe(1-x )S2) to active sulfur species (e.g., Fe(1-x )S(2-y ), S°). Selected modified pyrite surfaces were incubated with cells of sulfur-oxidizing Acidithiobacillus thiooxidans for 24 h in a specific culture medium (pH 2). Abiotic control experiments were also performed to compare chemical and biological oxidation. After incubation, the attached cells density and their exopolysaccharides were analyzed by confocal laser scanning microscopy (CLMS) and atomic force microscopy (AFM) on bio-oxidized surfaces; additionally, S(n)²â»/S° speciation was carried out on bio-oxidized and abiotic pyrite surfaces using Raman spectroscopy. Our results indicate an important correlation between the evolution of S(n)²â»/S° surface species ratio and biofilm formation. Hence, pyrite surfaces with mainly passive-sulfur species were less colonized by A. thiooxidans as compared to surfaces with active sulfur species. These results provide knowledge that may contribute to establishing interfacial conditions that enhance or delay metal sulfide (MS) dissolution, as a function of the biofilm formed by sulfur-oxidizing bacteria.