Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(11): 115102, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461483

RESUMO

Talbot-Lau x-ray interferometry is a refraction-based diagnostic that can map electron density gradients through phase-contrast methods. The Talbot-Lau x-ray deflectometry (TXD) diagnostics have been deployed in several high energy density experiments. To improve diagnostic performance, a monochromatic TXD was implemented on the Multi-Tera Watt (MTW) laser using 8 keV multilayer mirrors (Δθ/θ = 4.5%-5.6%). Copper foil and wire targets were irradiated at 1014-1015 W/cm2. Laser pulse length (∼10 to 80 ps) and backlighter target configurations were explored in the context of Moiré fringe contrast and spatial resolution. Foil and wire targets delivered increased contrast <30%. The best spatial resolution (<6 µm) was measured for foils irradiated 80° from the surface. Further TXD diagnostic capability enhancement was achieved through the development of advanced data postprocessing tools. The Talbot Interferometry Analysis (TIA) code enabled x-ray refraction measurements from the MTW monochromatic TXD. Additionally, phase, attenuation, and dark-field maps of an ablating x-pinch load were retrieved through TXD. The images show a dense wire core of ∼60 µm diameter surrounded by low-density material of ∼40 µm thickness with an outer diameter ratio of ∼2.3. Attenuation at 8 keV was measured at ∼20% for the dense core and ∼10% for the low-density material. Instrumental and experimental limitations for monochromatic TXD diagnostics are presented. Enhanced postprocessing capabilities enabled by TIA are demonstrated in the context of high-intensity laser and pulsed power experimental data analysis. Significant advances in TXD diagnostic capabilities are presented. These results inform future diagnostic technique upgrades that will improve the accuracy of plasma characterization through TXD.

2.
Rev Sci Instrum ; 92(6): 065110, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243593

RESUMO

Talbot-Lau x-ray interferometry has been implemented to map electron density gradients in High Energy Density Physics (HEDP) experiments. X-ray backlighter targets have been evaluated for Talbot-Lau X-ray Deflectometry (TXD). Cu foils, wires, and sphere targets have been irradiated by 10-150 J, 8-30 ps laser pulses, while two pulsed-power generators (∼350 kA, 350 ns and ∼200 kA, 150 ns) have driven Cu wire, hybrid, and laser-cut x-pinches. A plasma ablation front generated by the Omega EP laser was imaged for the first time through TXD for densities >1023 cm-3. Backlighter optimization in combination with x-ray CCD, image plates, and x-ray film has been assessed in terms of spatial resolution and interferometer contrast for accurate plasma characterization through TXD in pulsed-power and high-intensity laser environments. The results obtained thus far demonstrate the potential of TXD as a powerful diagnostic for HEDP.

3.
Appl Opt ; 59(27): 8380-8387, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32976425

RESUMO

Talbot-Lau x-ray interferometry is a grating-based phase-contrast technique, which enables measurement of refractive index changes in matter with micrometric spatial resolution. The technique has been established using a variety of hard x-ray sources, including synchrotron, free-electron lasers, and x-ray tubes, and could be used in the optical range for low-density plasmas. The tremendous development of table-top high-power lasers makes the use of high-intensity, laser-driven K-alpha sources appealing for Talbot-Lau interferometer applications in both high-energy-density plasma experiments and biological imaging. To this end, we present the first, to the best of our knowledge, feasibility study of Talbot-Lau phase-contrast imaging using a high-repetition-rate laser of moderate energy (100 mJ at a repetition rate of 10 Hz) to irradiate a copper backlighter foil. The results from up to 900 laser pulses were integrated to form interferometric images. A constant fringe contrast of 20% is demonstrated over 100 accumulations, while the signal-to-noise ratio continued to increase with the number of shots. Phase retrieval is demonstrated without prior ex-situ phase stepping. Instead, correlation matrices are used to compensate for the displacement between reference acquisition and the probing of a PMMA target rod. The steps for improved measurements with more energetic laser systems are discussed. The final results are in good agreement with the theoretically predicted outcomes, demonstrating the applicability of this diagnostic to a range of laser facilities for use across several disciplines.

4.
Rev Sci Instrum ; 91(2): 023511, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32113451

RESUMO

A Talbot-Lau X-ray Deflectometer (TXD) was implemented in the OMEGA EP laser facility to characterize the evolution of an irradiated foil ablation front by mapping electron densities >1022 cm-3 by means of Moiré deflectometry. The experiment used a short-pulse laser (30-100 J, 10 ps) and a foil copper target as an x-ray backlighter source. In the first experimental tests performed to benchmark the diagnostic platform, grating survival was demonstrated and x-ray backlighter laser parameters that deliver Moiré images were described. The necessary modifications to accurately probe the ablation front through TXD using the EP-TXD diagnostic platform are discussed.

5.
Phys Rev E ; 100(2-1): 021201, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31574771

RESUMO

We describe a platform developed on the LULI2000 laser facility to investigate the evolution of Rayleigh-Taylor instability (RTI) in scaled conditions relevant to young supernova remnants (SNRs) up to 200 years. An RT unstable interface is imaged with a short-pulse laser-driven (PICO2000) x-ray source, providing an unprecedented simultaneous high spatial (24µm) and temporal (10 ps) resolution. This experiment provides relevant data to compare with astrophysical codes, as observational data on the development of RTI at the early stage of the SNR expansion are missing. A comparison is also performed with FLASH radiative magnetohydrodynamic simulations.

6.
Rev Sci Instrum ; 89(10): 10G127, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399908

RESUMO

Talbot-Lau x-ray interferometers can map electron density gradients in High Energy Density (HED) samples. In the deflectometer configuration, it can provide refraction, attenuation, elemental composition, and scatter information from a single image. X-ray backlighters in Talbot-Lau deflectometry must meet specific requirements regarding source size and x-ray spectra, amongst others, to accurately diagnose a wide range of HED experiments. 8 keV sources produced in the high-power laser and pulsed power environment were evaluated as x-ray backlighters for Talbot-Lau x-ray deflectometry. In high-power laser experiments, K-shell emission was produced by irradiating copper targets (500 × 500 × 12.5 µm3 foils, 20 µm diameter wire, and >10 µm diameter spheres) with 30 J, 8-30 ps laser pulses and a 25 µm copper wire with a 60 J, 10 ps laser pulse. In the pulsed power environment, single (2 × 40 µm) and double (4 × 25 µm) copper x-pinches were driven at ∼1 kA/ns. Moiré fringe formation was demonstrated for all x-ray sources explored, and detector performance was evaluated for x-ray films, x-ray CCDs, and imaging plates in context of spatial resolution, x-ray emission, and fringe contrast.

7.
Rev Sci Instrum ; 87(11): 11D501, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910439

RESUMO

Talbot-Lau X-ray deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping were demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moiré pattern formation and grating survival were also observed using a copper x-pinch driven at 400 kA, ∼1 kA/ns. These results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

9.
Rev Sci Instrum ; 87(2): 023505, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931847

RESUMO

X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 10(23) cm(-3) in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. The 50 ± 15 µm spatial resolution achieved across the full field of view was found to be limited by the x-ray source-size, similar to conventional radiography.


Assuntos
Elétrons , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos
10.
Appl Opt ; 54(10): 2577-83, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25967162

RESUMO

The Talbot-Lau x-ray moiré deflectometer is a powerful plasma diagnostic capable of delivering simultaneous refraction and attenuation information through the accurate detection of x-ray phase shift and intensity. The diagnostic can provide the index of refraction n=1-δ+iß of an object (dense plasma, for example) placed in the x-ray beam by independently measuring both δ and ß, which are directly related to the electron density n(e) and the attenuation coefficient µ, respectively. Since δ and ß depend on the effective atomic number Z(eff), a map can be obtained from the ratio between phase and absorption images acquired in a single shot. The Talbot-Lau x-ray moiré deflectometer and its corresponding data acquisition and processing are briefly described to illustrate how the above is achieved; Z(eff) values of test objects within the 4-12 range were obtained experimentally through simultaneous refraction and attenuation measurements. We show that Z(eff) mapping of objects does not require previous knowledge of sample length or shape. The determination of Z(eff) from refraction and attenuation measurements with moiré deflectometry could be of high interest to various domains of high energy density research, such as shocked materials and inertial confinement fusion experiments, as well as material science and nondestructive testing.

11.
Rev Sci Instrum ; 85(7): 073702, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25085141

RESUMO

The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities. We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 µm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients.

12.
Rev Sci Instrum ; 81(9): 093502, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20886977

RESUMO

We present the experimental details and results from a low energy but high repetition rate compact plasma capillary source for extreme ultraviolet and soft x-ray research and applications. Two lengths of capillary are mounted in two versions of a closely related design. The discharge operates in 1.6 and 3.2 mm inner diameter alumina capillaries of lengths 21 and 36 mm. The use of water both as dielectric and as coolant simplifies the compact low inductance design with nanosecond discharge periods. The stored electrical energy of the discharge is approximately 0.5 J and is provided by directly charging the capacitor plates from an inexpensive insulated-gate bipolar transistor in 1 µs or less. We present characteristic argon spectra from plasma between 30 and 300 Å as well as temporally resolved x-ray energy fluence in discrete bands on axis. The spectra also allow the level of ablated wall material to be gauged and associated with useful capillary lifetime according to the chosen configuration and energy storage. The connection between the electron beams associated with the transient hollow cathode mechanism, soft x-ray output, capillary geometry, and capillary lifetime is reported. The role of these e-beams and the plasma as measured on-axis is discussed. The relation of the electron temperature and the ionization stages observed is discussed in the context of some model results of ionization in a non-Maxwellian plasma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...