Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 57(2): 138-145, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29328157

RESUMO

Talbot-Lau x-ray interferometry uses incoherent x-ray sources to measure refraction index changes in matter. These measurements can provide accurate electron density mapping through phase retrieval. An adaptation of the interferometer has been developed in order to meet the specific requirements of high-energy density experiments. This adaptation is known as a moiré deflectometer, which allows for single-shot capabilities in the form of interferometric fringe patterns. The moiré x-ray deflectometry technique requires a set of object and reference images in order to provide electron density maps, which can be costly in the high-energy density environment. In particular, synthetic reference phase images obtained ex situ through a phase-scan procedure, can provide a feasible solution. To test this procedure, an object phase map was retrieved from a single-shot moiré image obtained from a plasma-produced x-ray source. A reference phase map was then obtained from phase-stepping measurements using a continuous x-ray tube source in a small laboratory setting. The two phase maps were used to retrieve an electron density map. A comparison of the moiré and phase-stepping phase-retrieval methods was performed to evaluate single-exposure plasma electron density mapping for high-energy density and other transient plasma experiments. It was found that a combination of phase-retrieval methods can deliver accurate refraction angle mapping. Once x-ray backlighter quality is optimized, the ex situ method is expected to deliver electron density mapping with improved resolution. The steps necessary for improved diagnostic performance are discussed.

2.
Appl Opt ; 54(19): 5956-61, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26193138

RESUMO

Moiré fringe deflectometry with grating interferometers is a technique that enables refraction-based x-ray imaging using a single exposure of an object. To obtain the refraction image, the method requires a reference fringe pattern (without the object). Our study shows that, in order to avoid artifacts, the reference pattern must be exactly matched in phase with the object fringe pattern. In experiments, however, it is difficult to produce a perfectly matched reference pattern due to unavoidable interferometer drifts. We present a simple method to obtain matched reference patterns using a phase-scan procedure to generate synthetic Moiré images. The method will enable deflectometric diagnostics of transient phenomena such as laser-produced plasmas and could improve the sensitivity and accuracy of medical phase-contrast imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...