Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(7)2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021944

RESUMO

Ideally, an insulation system must be capable of electrically insulating the active components of a machine or device subjected to high voltages. However, due to the presence of polluting agents or imperfections inside or on the surface of the insulation, small current pulses called partial discharges (PDs) are common, which partially short-circuit the insulation and cause it to lose its insulating properties, and thus its insulation capacity, over time. In some cases, measurements of this phenomenon are limited by the type of sensor used; if it is not adequate, it can distort the obtained results, which can lead to a misdiagnosis of the state of the device. The inductive loop sensor has experimentally been demonstrated to be capable of properly measuring different types of PDs. However, because of its current design, there are several practical limitations on its use in real devices or environments. An example is the presence of a primary conductor located at a fixed distance from the sensor, through which PD pulses must flow for the sensor to capture them. In this article, the sensor's behavior is studied at different separation distances from the line through which the PD pulses flow. In addition, the measuring capacity of the sensor is tested by removing the presence of the primary conductor and placing the sensor directly over the line through which the PD pulses of a real device flow.

2.
J Nanosci Nanotechnol ; 11(5): 3899-910, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21780384

RESUMO

The influence of electrodeposition potential, pH, composition and temperature of the electrolytic bath on the structure of cobalt nanowires arrays electrodeposited into anodic aluminum oxide (AAO) porous membranes is reported. XRD, SEM, and TEM analysis were employed to characterize structural (crystal phase, crystallographic texture, and grain size), and morphological nanowire properties. It was confirmed that at pH 2 the electrodeposition potential has not influence on the preferred crystallographic orientation of the electrochemically grown Co nanowires. At pH 4 the electrodeposition potential controls the growth of cobalt nanowires along some preferential crystallographic planes. The electrolytic pH bath modulates the fcc or hcp phase exhibited by the cobalt nanowires. Single crystalline nanowires with a hcp phase strongly oriented along the (2021) crystallographic plane were obtained at pH 4 and at -1.1 V (vs. Ag/AgCl), a result not previously reported. High electrolytic bath temperatures contributed to improve the single crystalline character of the cobalt nanowires. The presence of chloride anion in the electrolytic bath also influenced on the structural properties of the resulting cobalt nanowires, improving their crystallinity. The optical reflectance of the samples shows a structure in the UV-blue region that can be assigned to the two-dimensional morphology arising in the shape of the almost parallel nanowires. Magnetic measurements showed that different electrodeposition potentials and electrolytic bath pH lead to different magnetic anisotropies on the nanowire array samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA