Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903333

RESUMO

Herein, we describe the synthesis, crystal structure, and electronic properties of {[K2(dmso)(H2O)5][Ni2(H2mpba)3]·dmso·2H2O}n (1) and [Ni(H2O)6][Ni2(H2mpba)3]·3CH3OH·4H2O (2) [dmso = dimethyl sulfoxide; CH3OH = methanol; and H4mpba = 1,3-phenylenebis(oxamic acid)] bearing the [Ni2(H2mpba)3]2- helicate, hereafter referred to as {NiII2}. SHAPE software calculations indicate that the coordination geometry of all the NiII atoms in 1 and 2 is a distorted octahedron (Oh) whereas the coordination environments for K1 and K2 atoms in 1 are Snub disphenoid J84 (D2d) and distorted octahedron (Oh), respectively. The {NiII2} helicate in 1 is connected by K+ counter cations yielding a 2D coordination network with sql topology. In contrast to 1, the electroneutrality of the triple-stranded [Ni2(H2mpba)3] 2- dinuclear motif in 2 is achieved by a [Ni(H2O)6]2+ complex cation, where the three neighboring {NiII2} units interact in a supramolecular fashion through four R22(10) homosynthons yielding a 2D array. Voltammetric measurements reveal that both compounds are redox active (with the NiII/NiI pair being mediated by OH- ions) but with differences in formal potentials that reflect changes in the energy levels of molecular orbitals. The NiII ions from the helicate and the counter-ion (complex cation) in 2 can be reversibly reduced, resulting in the highest faradaic current intensities. The redox reactions in 1 also occur in an alkaline medium but at higher formal potentials. The connection of the helicate with the K+ counter cation has an impact on the energy levels of the molecular orbitals; this experimental behavior was further supported by X-ray absorption near-edge spectroscopy (XANES) experiments and computational calculations.

2.
Dalton Trans ; 51(32): 12258-12270, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35895288

RESUMO

Five cobalt(II) complexes of formula [CoCl2(Ln)2] [1 with L1 = 1-benzyl-2-phenyl-1H-benzimidazole, 2 with L2 = 2-(furan-2-yl)-1-(furan-2-ylmethyl)-1H-benzimidazole, 3 with L3 = 1-(4-chlorobenzyl)-2-(4-chlorophenyl)-1H-benzimidazole, 4 with L4 = 1-(2-methoxybenzyl)-2-(2-methoxyphenyl)-1H-benzimidazole and 5 with L5 = 2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzimidazole] have been synthesised, spectroscopically characterised and cryomagnetically investigated. The crystal structures of 1, 3, 4 and 5 have been determined by X-ray diffraction on single crystals. Each cobalt(II) ion is four-coordinate in a distorted tetrahedral environment built by two chloride anions and two benzimidazole ligands. The neutral molecules are well separated from each other, shortest intermolecular cobalt⋯cobalt distances being greater than 9.0 Å. Static (dc) magnetic susceptibility measurements in the temperature range 2.0-300 K of 1-5 reveal the occurrence of a Curie law behaviour of magnetically non-interacting spin quadruplets in the high-temperature domain with a downturn at low temperatures due to magnetic anisotropy. The values of the D and E/D parameters for these compounds vary in the ranges -8.75 to +8.96 cm-1 and 0.00140 to 0.23, respectively. Dynamic (ac) magnetic susceptibility measurements of 1-5 show slow magnetic relaxation in the lack (1) or under the presence (1-5) of applied dc magnetic fields, a feature which is typical of single-molecule magnet behaviour (SMM). The analysis of the ac data shows that a thermally activated Orbach relaxation mechanism dominates this behaviour. Complexes 1-5 also act as efficient and highly selective eco-friendly catalysts in the coupling reaction between CO2 and epoxides to produce cyclic carbonates under solvent-free conditions. Under optimized reaction conditions, different epoxides were converted to the respective cyclic carbonate, with excellent conversions, using catalyst 4.

3.
Dalton Trans ; 50(31): 10707-10728, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34308946

RESUMO

In this work, we present the synthetic pathway, a refined structural description, complete solid-state characterization and the magnetic properties of four new cobalt(ii) compounds of formulas [Co(H2O)6][Co2(H2mpba)3]·2H2O·0.5dmso (1), [Co(H2O)6][Co2(H2mpba)3]·3H2O·0.5dpss (2), [Co2(H2mpba)2(H2O)4]n·4nH2O (3), and [Co2(H2mpba)2(CH3OH)2(H2O)2]n·0.5nH2O·2ndpss (4) [dpss = 2,2'-dipyridyldisulfide and H4mpba = 1,3-phenylenebis(oxamic) acid], where 2 and 4 were obtained from [Co(dpss)Cl2] (Pre-I) as the source of cobalt(ii). All four compounds are air-stable and were prepared under ambient conditions. 1 and 2 were obtained from a slow diffusion method [cobalt(ii) : H2mpba2- molar ratio used 1 : 1] and their structures are made up of [Co2(H2mpba)3]2- anionic helicate units and [Co(H2O)6]2+ cations, exhibiting supramolecular three-dimensional structures. Interestingly, a supramolecular honeycomb network between the helicate units interacting with each other through R22(10) type hydrogen bonds occurs in 2 hosting one co-crystallized dpss molecule. On the other hand, for the first time, linear (3) and zigzag (4) cobalt(ii) chains were isolated by slow evaporation of stirred solutions of mixed solvents with cobalt(ii) : H2mpba2- in 1 : 2 molar ratio at room temperature. Magnetic measurements of Pre-I revealed a quasi magnetically isolated S = 3/2 spin state with a significant second-order spin-orbit contribution as expected for tetrahedrally coordinated cobalt(ii) ions. The analysis of the variable temperature static (dc) magnetic susceptibility data through first- (1 and 3) and second-order spin-orbit coupling models (2 and 4) reveals the presence of magnetically non-interacting high-spin cobalt(ii) ions with easy-axis (1 and 4)/easy-plane magnetic anisotropies (2 and 4) with low rhombic distortions. Dynamic (ac) magnetic measurements for Pre-I and 1-4 below 8.0 K show that they are examples of field-induced Single-Ion Magnets (SIMs).

4.
Inorg Chem ; 60(9): 6176-6190, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33861078

RESUMO

The reaction of aqueous solutions of EuIII, TbIII, and GdIII ions with Na2Hpcpa [H3pcpa = N-(4-carboxyphenyl)oxamic acid] afforded three new isostructural oxamate-containing lanthanide(III) coordination polymers of general formula {LnIII2(Hpcpa)3(H2O)5·H2O}n [Ln = Eu (1),Tb (2), and Gd(3)]. Their structure is made up of neutral zigzag chains running parallel to the [101] direction where double syn-syn carboxylate(oxamate)-bridged dilanthanide(III) pairs (Ln1 and Ln2) are linked by three Hpcpa2- ligands, one of them with the µ-κ2O,O':κO″ coordination mode and the other two with the µ3-κ2O,O':κO″:κO'''. Additionally, two of those chains are interlinked through hydrogen bonding and π-π type interactions, resulting in a porous structure with channels where water molecules are hosted. The emission properties of 1 and 2 are evaluated as a function of the temperature, exhibiting an emission in red and green, respectively. The external quantum yield for 2 is approximately 7 times that obtained for 1, indicating that the oxamate ligand is a better sensitizer for TbIII ions. The temperature dependence of the dc magnetic properties of 1-3 reveals a different magnetic behavior depending on the nature of the LnIII ion. A continuous decrease of χMT occurs for 1 upon cooling, and finally χMT tends to vanish, as expected for the thermal depopulation of the six magnetic 7FJ excited states (J = 1-6) of the EuIII ion with a nonmagnetic 7F0 ground state. χMT for 2 decreases sharply with decreasing the temperature due to the depopulation of the splitted mJ levels of the 7F7 ground state of the magnetically anisotropic TbIII ion. A very weak antiferromagnetic interaction between the magnetically isotropic GdIII ions across the double carboxylate(oxamate) bridge is responsible for the small decrease of χMT at low temperatures for 3. The dynamic (ac) magnetic properties of 2 and 3 reveal a slow magnetic relaxation with very incipient frequency-dependent χM″ signals below 6.0 K (2) and frequency-dependent χM″ peaks below 10.0 K (3) under nonzero applied dc magnetic fields, being thus new examples of field-induced single molecule magnets (SMMs).

5.
Chem Commun (Camb) ; 56(95): 15024-15027, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33185643

RESUMO

Here we discovered an unprecedented giant octahedral coordination compound bearing 16 Zn2+, 12 Na+, 8 O2-, 4 OH-, 13 H2O and 6 L4- ligands [L4- = fully deprotonated tetra(carboxymethoxy)calix[4]arene]. Its structure was elucidated by single-crystal X-ray diffraction, wavelength-dispersive X-ray spectroscopy and MALDI-TOF mass spectrometry. This compound, Zn8Na6L6⊃Zn8Na6O8(OH)4(H2O)13 (external⊃internal), has eight tetrahedral zinc ions forming the coordination vertices of an outermost cube where carboxylate groups from the sodium calixarenes are anchored. Its core consists of eight Zn2+, six Na+, eight O2-, and four OH- distributed over three layers, besides thirteen coordinated H2O molecules.

6.
J Org Chem ; 85(23): 15622-15630, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33175538

RESUMO

The use of star anise oil from a natural source as a dienophile in the multicomponent double Povarov reaction (MCPRs) to produce highly substituted julolidines with diverse technological applications is described. Within the framework of green chemistry, these MCPRs have many advantages such as (i) use of water in the reaction, (ii) creation of up to six bonds in one sequence, (iii) water as a sole waste, (iv) 100% of carbon economy, (v) a metal-free process, and (vi) nontoxic and reusable organocatalysts. These advantages, along with a simple workup procedure, make this protocol greener for the synthesis of julolidines.

7.
Acta Crystallogr C Struct Chem ; 75(Pt 6): 667-677, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166918

RESUMO

We report here for the first time a cocrystal of the so-called neutral calix[4]tube, which is two tail-to-tail-arranged and partially deprotonated tetrakis(carboxymethoxy)calix[4]arenes, including three sodium ions, with 2-(thiophen-2-yl)-1,3-benzothiazole, namely trisodium bis(carboxymethoxy)bis(carboxylatomethoxy)calix[4]arene tris(carboxymethoxy)(carboxylatomethoxy)calix[4]arene-2-(thiophen-2-yl)-1,3-benzothiazole-dimethyl sulfoxide-water (1/1/2/2), 3Na+·C36H30O122-·C36H31O12-·C11H7NS2·2C2H6OS·2H2O, which provides a new approach into the host-guest chemistry of inclusion complexes. Three packing polymorphs of the same benzothiazole with high Z' (one with Z' = 8 and two with Z' = 4) were also discovered in the course of our desired cocrystallization. The inspection of these polymorphs and a previously known polymorph with Z' = 2 revealed that Z' increases as the strength of intermolecular contacts decreases. Also, these results expand the frontier of invoking calixarenes as a host for nonsolvent small molecules, besides providing knowledge on the rare formation of high-Z' packing polymorphs of simple molecules, such as the target benzothiazole.

8.
Acta Crystallogr C Struct Chem ; 75(Pt 6): 694-701, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166921

RESUMO

We report a new polymorph of (1E,4E)-1,5-bis(4-fluorophenyl)penta-1,4-dien-3-one, C17H12F2O. Contrary to the precedent literature polymorph with Z' = 3, our polymorph has one half molecule in the asymmetric unit disordered over two 50% occupancy sites. Each site corresponds to one conformation around the single bond vicinal to the carbonyl group (so-called anti or syn). The other half of the bischalcone is generated by twofold rotation symmetry, giving rise to two half-occupied and overlapping molecules presenting both anti and syn conformations in their open chain. Such a disorder allows for distinct patterns of intermolecular C-H...O contacts involving the carbonyl and anti-oriented ß-C-H groups, which is reflected in three 13C NMR chemical shifts for the carbonyl C atom. Here, we have also assessed the cytotoxicity of three symmetric bischalcones through their in vitro antitumour potential against three cancer cell lines. Cytotoxicity assays revealed that this biological property increases as halogen electronegativity increases.

9.
J Am Chem Soc ; 141(8): 3400-3403, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30702877

RESUMO

We report a novel bright deep-blue-emitting crystal form based on a simple cadmium coordination polymer with an impressive external photoluminescence quantum yield of 75.4(9)%.

10.
Acta Crystallogr C Struct Chem ; 74(Pt 8): 870-875, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30080159

RESUMO

Annonalide (3ß,20-epoxy-3α,16-dihydroxy-15-oxo-7-pimaren-19,6ß-olide, C20H26O6, 1) is the major (9ßH)-pimarane diterpene isolated from tubers of Cassimirella ampla, and it exhibits cytotoxic properties upon interaction with ctDNA. We have prepared new derivatives of 1 by modification of the (9ßH)-pimarane backbone and report here the semisynthesis and absolute configuration of a novel rearranged 19,20-δ-lactone (9ßH)-pimarane. Our approach was the reduction of the carbonyl groups of 1 with sodium borohydride, at positions C15 (no stereoselectivity) and C3 (stereoselective reduction), followed by rearrangement of the 6,19-γ-lactone ring into the six-membered 19,20-δ-lactone ring in 4a (3ß,6ß,16-trihydroxy-7-pimaren-19,20ß-olide monohydrate, C20H30O6·H2O). The absolute structure of the new compound, 4a, was determined unambiguously with a Flack parameter x of -0.01 (11), supporting the stereochemistry assignment of 1 redetermined here. Besides the changes in the pattern of covalent bonds caused by reduction and lactone rearrangement, the conformation of one of the three fused cyclohexane rings is profoundly different in 4a, adopting a chair conformation instead of the boat shape found in 1. Furthermore, the intramolecular hydrogen bond present in 1 is lost in new compound 4a, due to hydrogen bonding between the 3-OH group and the solvent water molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...