Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Metab ; 126(4): 416-428, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30686684

RESUMO

Glutaric Aciduria type I (GA-I) is caused by mutations in the GCDH gene. Its deficiency results in accumulation of the key metabolites glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA) in body tissues and fluids. Present knowledge on the neuropathogenesis of GA-I suggests that GA and 3-OHGA have toxic properties on the developing brain. We analyzed morphological and biochemical features of 3D brain cell aggregates issued from Gcdh-/- mice at two different developmental stages, day-in-vitro (DIV) 8 and 14, corresponding to the neonatal period and early childhood. We also induced a metabolic stress by exposing the aggregates to 10 mM l-lysine (Lys). Significant amounts of GA and 3-OHGA were detected in Gcdh-/- aggregates and their culture media. Ammonium was significantly increased in culture media of Gcdh-/- aggregates at the early developmental stage. Concentrations of GA, 3-OHGA and ammonium increased significantly after exposure to Lys. Gcdh-/- aggregates manifested morphological alterations of all brain cell types at DIV 8 while at DIV 14 they were only visible after exposure to Lys. Several chemokine levels were significantly decreased in culture media of Gcdh-/- aggregates at DIV 14 and after exposure to Lys at DIV 8. This new in vitro model for brain damage in GA-I mimics well in vivo conditions. As seen previously in WT aggregates exposed to 3-OHGA, we confirmed a significant ammonium production by immature Gcdh-/- brain cells. We described for the first time a decrease of chemokines in Gcdh-/- culture media which might contribute to brain cell injury in GA-I.


Assuntos
Compostos de Amônio/análise , Encéfalo/citologia , Quimiocinas/análise , Meios de Cultura/análise , Glutaril-CoA Desidrogenase/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Compostos de Amônio/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encefalopatias Metabólicas/genética , Técnicas de Cultura de Células , Quimiocinas/metabolismo , Meios de Cultura/metabolismo , Glutaril-CoA Desidrogenase/deficiência , Lisina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Alicerces Teciduais
2.
Mol Genet Metab ; 124(4): 266-277, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29934063

RESUMO

BACKGROUND: Methylmalonic aciduria (MMAuria) is an inborn error of metabolism leading to neurological deterioration. In this study, we used 3D organotypic brain cell cultures derived from embryos of a brain-specific Mut-/- (brain KO) mouse to investigate mechanisms leading to brain damage. We challenged our in vitro model by a catabolic stress (temperature shift). RESULTS: Typical metabolites for MMAuria as well as a massive NH4+ increase were found in the media of brain KO cultures. We investigated different pathways of intracerebral NH4+ production and found increased expression of glutaminase 2 and diminished expression of GDH1 in Mut-/- aggregates. While all brain cell types appeared affected in their morphological development in Mut-/- aggregates, the most pronounced effects were observed on astrocytes showing swollen fibers and cell bodies. Inhibited axonal elongation and delayed myelination of oligodendrocytes were also noted. Most effects were even more pronounced after 48 h at 39 °C. Microglia activation and an increased apoptosis rate suggested degeneration of Mut-/- brain cells. NH4+ accumulation might be the trigger for all observed alterations. We also found a generalized increase of chemokine concentrations in Mut-/- culture media at an early developmental stage followed by a decrease at a later stage. CONCLUSION: We proved for the first time that Mut-/- brain cells are indeed able to produce the characteristic metabolites of MMAuria. We confirmed significant NH4+ accumulation in culture media of Mut-/- aggregates, suggesting that intracellular NH4+ concentrations might even be higher, gave first clues on the mechanisms leading to NH4+ accumulation in Mut-/- brain cells, and showed the involvement of neuroinflammatory processes in the neuropathophysiology of MMAuria.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Compostos de Amônio/metabolismo , Encéfalo/metabolismo , Metilmalonil-CoA Mutase/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Compostos de Amônio/toxicidade , Animais , Encéfalo/fisiopatologia , Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Lesões Encefálicas/fisiopatologia , Humanos , Ácido Metilmalônico/metabolismo , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos
3.
Neuroscience ; 343: 355-363, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-27984186

RESUMO

Glutaryl-CoA dehydrogenase (GCDH) is a mitochondrial enzyme that is involved in the degradation of tryptophan, lysine and hydroxylysine. Deficient enzyme activity leads to glutaric aciduria type-I (GA-I). This neurometabolic disease usually manifests with acute encephalopathic crises and striatal neuronal death in early childhood leading to an irreversible dystonic-dyskinetic movement disorder. Fronto-temporal atrophy and white matter changes are already present in the pre-symptomatic period. No detailed information on GCDH expression during embryonic development and in adulthood was available so far. Using immunofluorescence microscopy and cell-type-specific markers to localize GCDH in different tissues, we describe the differential cellular localization of GCDH in adult rat brain and peripheral organs as well as its spatiotemporal expression pattern. During embryonic development GCDH was predominantly expressed in neurons of the central and peripheral nervous system. Significant expression levels were found in epithelial cells (skin, intestinal and nasal mucosa) of rat embryos at different developmental stages. Besides the expected strong expression in liver, GCDH was found to be significantly expressed in neurons of different brain regions, renal proximal tubules, intestinal mucosa and peripheral nerves of adult rats. GCDH was found widely expressed in embryonic and adult rat tissues. In rat embryos GCDH is predominantly expressed in brain implying an important role for brain development. Interestingly, GCDH was found to be significantly expressed in different other organs (e.g. kidney, gut) in adult rats probably explaining the evolving phenotype in GA-I patients.


Assuntos
Encéfalo/enzimologia , Encéfalo/crescimento & desenvolvimento , Glutaril-CoA Desidrogenase/metabolismo , Animais , Encéfalo/citologia , Células Epiteliais/citologia , Células Epiteliais/enzimologia , Feminino , Imunofluorescência , Glutaril-CoA Desidrogenase/genética , Mucosa Intestinal/citologia , Mucosa Intestinal/enzimologia , Mucosa Intestinal/crescimento & desenvolvimento , Rim/citologia , Rim/enzimologia , Rim/crescimento & desenvolvimento , Fígado/citologia , Fígado/enzimologia , Fígado/crescimento & desenvolvimento , Pulmão/citologia , Pulmão/enzimologia , Pulmão/crescimento & desenvolvimento , Camundongos Knockout , Microscopia de Fluorescência , Desenvolvimento Muscular/fisiologia , Músculos/citologia , Músculos/enzimologia , Neurônios/citologia , Neurônios/metabolismo , Sistema Nervoso Periférico/citologia , Sistema Nervoso Periférico/enzimologia , Sistema Nervoso Periférico/crescimento & desenvolvimento , Ratos Sprague-Dawley
4.
Mol Genet Metab ; 119(1-2): 57-67, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27599447

RESUMO

Using 3D organotypic rat brain cell cultures in aggregates we recently identified 2-methylcitrate (2-MCA) as the main toxic metabolite for developing brain cells in methylmalonic aciduria. Exposure to 2-MCA triggered morphological changes and apoptosis of brain cells. This was accompanied by increased ammonium and decreased glutamine levels. However, the sequence and causal relationship between these phenomena remained unclear. To understand the sequence and time course of pathogenic events, we exposed 3D rat brain cell aggregates to different concentrations of 2-MCA (0.1, 0.33 and 1.0mM) from day in vitro (DIV) 11 to 14. Aggregates were harvested at different time points from DIV 12 to 19. We compared the effects of a single dose of 1mM 2-MCA administered on DIV 11 to the effects of repeated doses of 1mM 2-MCA. Pan-caspase inhibitors Z-VAD FMK or Q-VD-OPh were used to block apoptosis. Ammonium accumulation in the culture medium started within few hours after the first 2-MCA exposure. Morphological changes of the developing brain cells were already visible after 17h. The highest rate of cleaved caspase-3 was observed after 72h. A dose-response relationship was observed for all effects. Surprisingly, a single dose of 1mM 2-MCA was sufficient to induce all of the biochemical and morphological changes in this model. 2-MCA-induced ammonium accumulation and morphological changes were not prevented by concomitant treatment of the cultures with pan-caspase inhibitors Z-VAD FMK or Q-VD-OPh: ammonium increased rapidly after a single 1mM 2-MCA administration even after apoptosis blockade. We conclude that following exposure to 2-MCA, ammonium production in brain cell cultures is an early phenomenon, preceding cell degeneration and apoptosis, and may actually be the cause of the other changes observed. The fact that a single dose of 1mM 2-MCA is sufficient to induce deleterious effects over several days highlights the potential damaging effects of even short-lasting metabolic decompensations in children affected by methylmalonic aciduria.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Compostos de Amônio/metabolismo , Lesões Encefálicas/metabolismo , Citratos/toxicidade , Clorometilcetonas de Aminoácidos/farmacologia , Erros Inatos do Metabolismo dos Aminoácidos/induzido quimicamente , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Compostos de Amônio/toxicidade , Animais , Apoptose/efeitos dos fármacos , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/patologia , Caspase 3/metabolismo , Técnicas de Cultura de Células , Meios de Cultura/química , Glutamina/metabolismo , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Quinolinas/farmacologia , Ratos
5.
Am J Hum Genet ; 92(6): 990-5, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23684011

RESUMO

Kenny-Caffey syndrome (KCS) and the similar but more severe osteocraniostenosis (OCS) are genetic conditions characterized by impaired skeletal development with small and dense bones, short stature, and primary hypoparathyroidism with hypocalcemia. We studied five individuals with KCS and five with OCS and found that all of them had heterozygous mutations in FAM111A. One mutation was identified in four unrelated individuals with KCS, and another one was identified in two unrelated individuals with OCS; all occurred de novo. Thus, OCS and KCS are allelic disorders of different severity. FAM111A codes for a 611 amino acid protein with homology to trypsin-like peptidases. Although FAM111A has been found to bind to the large T-antigen of SV40 and restrict viral replication, its native function is unknown. Molecular modeling of FAM111A shows that residues affected by KCS and OCS mutations do not map close to the active site but are clustered on a segment of the protein and are at, or close to, its outer surface, suggesting that the pathogenesis involves the interaction with as yet unidentified partner proteins rather than impaired catalysis. FAM111A appears to be crucial to a pathway that governs parathyroid hormone production, calcium homeostasis, and skeletal development and growth.


Assuntos
Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Craniofaciais/genética , Nanismo/genética , Hiperostose Cortical Congênita/genética , Hipocalcemia/genética , Hipoparatireoidismo/genética , Receptores Virais/genética , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/mortalidade , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Doenças do Desenvolvimento Ósseo/mortalidade , Doenças do Desenvolvimento Ósseo/patologia , Criança , Anormalidades Craniofaciais/mortalidade , Anormalidades Craniofaciais/patologia , Nanismo/diagnóstico por imagem , Nanismo/mortalidade , Estudos de Associação Genética , Heterozigoto , Humanos , Hiperostose Cortical Congênita/diagnóstico por imagem , Hiperostose Cortical Congênita/mortalidade , Hipocalcemia/diagnóstico por imagem , Hipocalcemia/mortalidade , Hipoparatireoidismo/diagnóstico por imagem , Hipoparatireoidismo/mortalidade , Lactente , Recém-Nascido , Masculino , Mutação de Sentido Incorreto , Hormônio Paratireóideo/deficiência , Radiografia
6.
Rev Port Cardiol ; 31(9): 577-87, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22857948

RESUMO

BACKGROUND: Sarcomeric hypertrophic cardiomyopathy has heterogeneous phenotypic expressions, of which sudden cardiac death is the most feared. A genetic diagnosis is essential to identify subjects at risk in each family. The spectrum of disease-causing mutations in the Portuguese population is unknown. METHODS: Seventy-seven unrelated probands with hypertrophic cardiomyopathy were systematically screened for mutations by PCR and sequencing of five sarcomeric genes: MYBPC3, MYH7, TNNT2, TNNI3 and MYL2. Familial cosegregation analysis was performed in most patients. RESULTS: Thirty-four different mutations were identified in 41 (53%) index patients, 71% with familial hypertrophic cardiomyopathy. The most frequently involved gene was MYBPC3 (66%) with 22 different mutations (8 novel) in 27 patients, followed by MYH7 (22%), TNNT2 (12%) and TNNI3 (2.6%). In three patients (7%), two mutations were found in MYBPC3 and/or MYH7. Additionally, 276 relatives were screened, leading to the identification of a mean of three other affected relatives for each pedigree with the familial form of the disease. CONCLUSIONS: Disease-associated mutations were identified mostly in familial hypertrophic cardiomyopathy, corroborating the idea that rarely studied genes may be implicated in sporadic forms. Private mutations are the rule, MYBPC3 being the most commonly involved gene. Mutations in MYBPC3 and MYH7 accounted for most cases of sarcomere-related disease. Multiple mutations in these genes may occur, which highlights the importance of screening both. The detection of novel mutations strongly suggests that all coding regions should be systematically screened. Genotyping in hypertrophic cardiomyopathy enables a more precise diagnosis of the disease, with implications for risk stratification and genetic counseling.


Assuntos
Cardiomiopatia Hipertrófica/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Portugal , Sarcômeros/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...