Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-28864221

RESUMO

One of the main challenges faced by investigators studying the nervous system of members of the phylum Echinodermata is the lack of markers to identify nerve cells and plexi. Previous studies have utilized an antibody, RN1, that labels most of the nervous system structures of the sea cucumber Holothuria glaberrima and other echinoderms. However, the antigen recognized by RN1 remained unknown. In the present work, the antigen has been characterized by immunoprecipitation, tandem mass spectrometry, and cDNA cloning. The RN1 antigen contains a START lipid-binding domain found in Steroidogenic Acute Regulatory (StAR) proteins and other lipid-binding proteins. Phylogenetic tree assembly showed that the START domain is highly conserved among echinoderms. We have named this antigen HgSTARD10 for its high sequence similarity to the vertebrate orthologs. Gene and protein expression analyses revealed an abundance of HgSTARD10 in most H. glaberrima tissues including radial nerve, intestine, muscle, esophagus, mesentery, hemal system, gonads and respiratory tree. Molecular cloning of HgSTARD10, consequent protein expression and polyclonal antibody production revealed the STARD10 ortholog as the antigen recognized by the RN1 antibody. Further characterization into this START domain-containing protein will provide important insights for the biochemistry, physiology and evolution of deuterostomes.


Assuntos
Holothuria/genética , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Fosfoproteínas/genética , Sequência de Aminoácidos , Animais , Anticorpos/química , Sítios de Ligação , Biomarcadores/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Holothuria/classificação , Holothuria/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/citologia , Neurônios/citologia , Especificidade de Órgãos , Fosfoproteínas/metabolismo , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
2.
J Exp Zool B Mol Dev Evol ; 328(3): 259-274, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28229527

RESUMO

Melanotransferrin (MTf) is a protein associated with oncogenetic, developmental, and immune processes which function remains unclear. The MTf gene has been reported in numerous vertebrate and invertebrate species, including echinoderms. We now report the finding of four different MTfs in the transcriptome of the sea cucumber Holothuria glaberrima. Sequence studies and phylogenetic analyses were done to ascertain the similarities among the putative proteins and their relationship with other transferrin family members. The genes were shown to be differentially expressed in various holothurian organs and to respond differently when the animals were challenged with the immune system activator lipopolysaccharide (LPS). Moreover, the four genes were found to be highly overexpressed during the early stages of intestinal regeneration. The finding of four different genes in the holothurian is particularly surprising, because only one MTf gene has been reported in all other animal species sequenced to date. This finding, combined with the increase expression during intestinal regeneration, suggests a new possible function of MTf in organ regenerative processes.


Assuntos
Intestinos/crescimento & desenvolvimento , Metaloproteínas/genética , Regeneração/genética , Pepinos-do-Mar/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Mucosa Intestinal/metabolismo , Metaloproteínas/metabolismo , Pepinos-do-Mar/crescimento & desenvolvimento
3.
BMC Dev Biol ; 11: 61, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-22004330

RESUMO

BACKGROUND: Determining the type and source of cells involved in regenerative processes has been one of the most important goals of researchers in the field of regeneration biology. We have previously used several cellular markers to characterize the cells involved in the regeneration of the intestine in the sea cucumber Holothuria glaberrima. RESULTS: We have now obtained a monoclonal antibody that labels the mesothelium; the outer layer of the gut wall composed of peritoneocytes and myocytes. Using this antibody we studied the role of this tissue layer in the early stages of intestinal regeneration. We have now shown that the mesothelial cells of the mesentery, specifically the muscle component, undergo dedifferentiation from very early on in the regeneration process. Cell proliferation, on the other hand, increases much later, and mainly takes place in the mesothelium or coelomic epithelium of the regenerating intestinal rudiment. Moreover, we have found that the formation of the intestinal rudiment involves a novel regenerative mechanism where epithelial cells ingress into the connective tissue and acquire mesenchymal phenotypes. CONCLUSIONS: Our results strongly suggest that the dedifferentiating mesothelium provides the initial source of cells for the formation of the intestinal rudiment. At later stages, cell proliferation supplies additional cells necessary for the increase in size of the regenerate. Our data also shows that the mechanism of epithelial to mesenchymal transition provides many of the connective tissue cells found in the regenerating intestine. These results present some new and important information as to the cellular basis of organ regeneration and in particular to the process of regeneration of visceral organs.


Assuntos
Desdiferenciação Celular/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Holothuria/fisiologia , Mucosa Intestinal/metabolismo , Regeneração/fisiologia , Animais , Anticorpos Monoclonais , Proliferação de Células , Epitélio/imunologia , Holothuria/citologia , Intestinos/crescimento & desenvolvimento , Mesentério/citologia , Mesentério/fisiologia , Células Musculares/imunologia , Regeneração/genética
4.
Biol Bull ; 213(1): 28-42, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17679718

RESUMO

The echinoderm nervous system is one of the least studied among invertebrates, partly because the tools available to study the neurobiology of this phylum are limited. We have now produced a monoclonal antibody (RN1) that labels a nervous system component of the sea cucumber Holothuria glaberrima. Western blots show that our antibody recognizes a major band of 66 kDa and a minor band of 53 kDa. Immunohistological experiments show that, in H. glaberrima, the antibody distinctly labels most of the known nervous system structures and some components that were previously unknown or little studied. A surprising finding was the labeling of nervous plexi within the connective tissue compartments of all organs studied. Double labeling with holothurian neuropeptides and an echinoderm synaptotagmin showed that RN1 labeled most, if not all, of the fibers labeled by these neuronal markers, but also a larger component of cells and fibers. The presence of a distinct connective tissue plexus in holothurians is highly significant since these organisms possess mutable connective tissues that change viscosity under the control of the nervous system. Therefore, the cells and fibers recognized by our monoclonal antibodies may be involved in controlling tensility changes in echinoderm connective tissue.


Assuntos
Tecido Conjuntivo/inervação , Holothuria/anatomia & histologia , Animais , Anticorpos Monoclonais/metabolismo , Antígenos/metabolismo , Epiderme/metabolismo , Holothuria/imunologia , Holothuria/metabolismo , Sistema Nervoso/anatomia & histologia , Sistema Nervoso/imunologia , Sistema Nervoso/metabolismo , Nervo Radial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...