Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasound ; 22(4): 199-204, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27433220

RESUMO

Quality assurance of medical ultrasound imaging systems is limited by repeatability, difficulty in quantifying results, and the time involved. A particularly interesting approach is demonstrated in the Edinburgh pipe phantom which, with an accompanying mathematical transformation, produces a single figure of merit for image quality from individual measurements of resolution over a range of depths. However, the Edinburgh pipe phantom still requires time-consuming manual scanning, mitigating against its routine use. This paper presents a means to overcome this limitation with a new device, termed the Dundee dynamic phantom, allowing rapid set-up and automated operation. The Dundee dynamic phantom is based on imaging two filamentary targets, positioned by computer control at different depths in a tank of 9.4% ethanol-water solution. The images are analysed in real time to assess if the targets are resolved, with individual measurements at different depths again used to calculate a single figure of merit, in this case for lateral resolution only. Test results are presented for a total of 18 scanners in clinical use for different applications. As a qualitative indication of viability, the figure of merit produced by the Dundee dynamic phantom is shown to differentiate between scanners operating at different frequencies and between a relatively new, higher quality system and an older, lower quality system.

2.
Phys Chem Chem Phys ; 9(21): 2744-52, 2007 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-17627318

RESUMO

The steady-state CH4 conversion by oxygen permeating through mixed-conducting (SrFe)0.7(SrAl2)0.3Oz composite membranes, comprising strontium-deficient SrFe(Al)O3-delta perovskite and monoclinic SrAl2O4-based phases, occurs via different mechanisms in comparison to the dry methane interaction with the lattice oxygen. The catalytic behavior of powdered (SrFe)0.7(SrAl2)0.3Oz, studied by temperature-programmed reduction in dry CH4 at 523-1073 K, is governed by the level of oxygen nonstoichiometry in the crystal lattice of the perovskite component and is qualitatively similar to that of other perovskite-related ferrites, such as Sr0.7La0.3Fe0.8Al0.2O3-delta. While extensive oxygen release from the ferrite lattice at 700-900 K leads to predominant total oxidation of methane, significant selectivity to synthesis gas formation, with H2/CO ratios close to 2, is observed above 1000 K, when a critical value of oxygen deficiency is achieved. The steady-state oxidation over dense membranes at 1123-1223 K results, however, in prevailing total combustion, particularly due to excessive oxygen chemical potential at the membrane surface. In combination with surface-limited oxygen permeability, mass transport limitations in a porous layer at the membrane permeate side prevent reduction and enable stable operation of (SrFe)0.7(SrAl2)0.3Oz membranes under air/methane gradient. Taking into account the catalytic activity of SrFeO3-delta-based phases for the partial oxidation of methane to synthesis gas and the important role of mass transport-related effects, one promising approach for membrane development is the fabrication of thick layer of porous ferrite-based catalyst at the surface of dense (SrFe)0.7(SrAl2)0.3Oz composite.


Assuntos
Compostos de Alumínio/química , Ferro/química , Metano/química , Oxigênio/química , Estrôncio/química , Catálise , Condutividade Elétrica , Oxirredução , Tamanho da Partícula , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...