Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 630(8018): 831-835, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768633

RESUMO

Observations of transiting gas giant exoplanets have revealed a pervasive depletion of methane1-4, which has only recently been identified atmospherically5,6. The depletion is thought to be maintained by disequilibrium processes such as photochemistry or mixing from a hotter interior7-9. However, the interiors are largely unconstrained along with the vertical mixing strength and only upper limits on the CH4 depletion have been available. The warm Neptune WASP-107b stands out among exoplanets with an unusually low density, reported low core mass10, and temperatures amenable to CH4, though previous observations have yet to find the molecule2,4. Here we present a JWST-NIRSpec transmission spectrum of WASP-107b that shows features from both SO2 and CH4 along with H2O, CO2, and CO. We detect methane with 4.2σ significance at an abundance of 1.0 ± 0.5 ppm, which is depleted by 3 orders of magnitude relative to equilibrium expectations. Our results are highly constraining for the atmosphere and interior, which indicate the envelope has a super-solar metallicity of 43 ± 8 × solar, a hot interior with an intrinsic temperature of Tint = 460 ± 40 K, and vigorous vertical mixing which depletes CH4 with a diffusion coefficient of Kzz = 1011.6±0.1 cm2 s-1. Photochemistry has a negligible effect on the CH4 abundance but is needed to account for the SO2. We infer a core mass of 11.5 - 3.6 + 3.0 M ⊕ , which is much higher than previous upper limits10, releasing a tension with core-accretion models11.

2.
Nature ; 537(7618): 69-72, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27437572

RESUMO

Three Earth-sized exoplanets were recently discovered close to the habitable zone of the nearby ultracool dwarf star TRAPPIST-1 (ref. 3). The nature of these planets has yet to be determined, as their masses remain unmeasured and no observational constraint is available for the planetary population surrounding ultracool dwarfs, of which the TRAPPIST-1 planets are the first transiting example. Theoretical predictions span the entire atmospheric range, from depleted to extended hydrogen-dominated atmospheres. Here we report observations of the combined transmission spectrum of the two inner planets during their simultaneous transits on 4 May 2016. The lack of features in the combined spectrum rules out cloud-free hydrogen-dominated atmospheres for each planet at ≥10σ levels; TRAPPIST-1 b and c are therefore unlikely to have an extended gas envelope as they occupy a region of parameter space in which high-altitude cloud/haze formation is not expected to be significant for hydrogen-dominated atmospheres. Many denser atmospheres remain consistent with the featureless transmission spectrum-from a cloud-free water-vapour atmosphere to a Venus-like one.

3.
Science ; 330(6004): 653-5, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21030652

RESUMO

The questions of how planets form and how common Earth-like planets are can be addressed by measuring the distribution of exoplanet masses and orbital periods. We report the occurrence rate of close-in planets (with orbital periods less than 50 days), based on precise Doppler measurements of 166 Sun-like stars. We measured increasing planet occurrence with decreasing planet mass (M). Extrapolation of a power-law mass distribution fitted to our measurements, df/dlogM = 0.39 M(-0.48), predicts that 23% of stars harbor a close-in Earth-mass planet (ranging from 0.5 to 2.0 Earth masses). Theoretical models of planet formation predict a deficit of planets in the domain from 5 to 30 Earth masses and with orbital periods less than 50 days. This region of parameter space is in fact well populated, implying that such models need substantial revision.

4.
Nature ; 443(7111): 534-40, 2006 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17024085

RESUMO

More than 200 extrasolar planets have been discovered around relatively nearby stars, primarily through the Doppler line shifts owing to reflex motions of their host stars, and more recently through transits of some planets across the faces of the host stars. The detection of planets with the shortest known periods, 1.2-2.5 days, has mainly resulted from transit surveys which have generally targeted stars more massive than 0.75 M(o), where M(o) is the mass of the Sun. Here we report the results from a planetary transit search performed in a rich stellar field towards the Galactic bulge. We discovered 16 candidates with orbital periods between 0.4 and 4.2 days, five of which orbit stars of masses in the range 0.44-0.75 M(o). In two cases, radial-velocity measurements support the planetary nature of the companions. Five candidates have orbital periods below 1.0 day, constituting a new class of ultra-short-period planets, which occur only around stars of less than 0.88 M(o). This indicates that those orbiting very close to more-luminous stars might be evaporatively destroyed or that jovian planets around stars of lower mass might migrate to smaller radii.

5.
Nature ; 440(7082): 311-4, 2006 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-16541067

RESUMO

Brown dwarfs are considered to be 'failed stars' in the sense that they are born with masses between the least massive stars (0.072 solar masses, M(o)) and the most massive planets (approximately 0.013M(o)); they therefore serve as a critical link in our understanding of the formation of both stars and planets. Even the most fundamental physical properties of brown dwarfs remain, however, largely unconstrained by direct measurement. Here we report the discovery of a brown-dwarf eclipsing binary system, in the Orion Nebula star-forming region, from which we obtain direct measurements of mass and radius for these newly formed brown dwarfs. Our mass measurements establish both objects as brown dwarfs, with masses of 0.054 +/- 0.005M(o) and 0.034 +/- 0.003M(o). At the same time, with radii relative to the Sun's of 0.669 +/- 0.034R(o) and 0.511 +/- 0.026R(o), these brown dwarfs are more akin to low-mass stars in size. Such large radii are generally consistent with theoretical predictions for young brown dwarfs in the earliest stages of gravitational contraction. Surprisingly, however, we find that the less-massive brown dwarf is the hotter of the pair; this result is contrary to the predictions of all current theoretical models of coeval brown dwarfs.

6.
Science ; 311(5761): 633-5, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16456073

RESUMO

Understanding how cool stars produce magnetic fields within their interiors is crucial for predicting the impact of such fields, such as the activity cycle of the Sun. In this respect, studying fully convective stars enables us to investigate the role of convective zones in magnetic field generation. We produced a magnetic map of a rapidly rotating, very-low-mass, fully convective dwarf through tomographic imaging from time series of spectropolarimetric data. Our results, which demonstrate that fully convective stars are able to trigger axisymmetric large-scale poloidal fields without differential rotation, challenge existing theoretical models of field generation in cool stars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...