Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World Neurosurg ; 187: 82-92, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583561

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a highly prevalent and potentially severe medical condition. Challenges regarding TBI management are related to accurate diagnostics, defining its severity, and establishing prompt interventions to affect outcomes. Among the health care components in the TBI handling strategy is intracranial pressure (ICP) monitoring, which is fundamental to therapy decisions. However, ICP monitoring is an Achilles tendon, imposing a significant financial burden on health care systems, particularly in middle and low-income communities. This article arises from the understanding from the authors that there is insufficient scientific evidence about the potential economic impacts from the use of noninvasive technologies in the monitoring of TBI. Based on personal experience, as well as from reading other, clinically focused studies, the thesis is that the use of such technologies could greatly affect the health care system and this article seeks to address this lack of literature, show ways in which such systems could be evaluated, and show estimations of possible results from these investigations. OBJECTIVE: This review primarily investigates the economic burden of TBI and whether new technologies are suitable to reduce its health care costs without compromising the quality of care, according to the levels of evidence available. The objective is to stimulate more research and attention in the area. METHODS: For this narrative review, a PubMed search was conducted for articles discussing TBI health care costs, as well as monitoring technologies (tomography, magnetic resonance imaging, optic nerve sheath diameter, transcranial Doppler, pupillometry, and noninvasive ICP waveform) and their application in managing TBI. Strategies were first evaluated from a medical noninferiority perspective before calculating the average savings of each selected strategy. All applicable studies were analyzed for quality using the Consolidated Health Economic Evaluation Reporting Standards 2022 Statement117 and this article was written to conform as much as possible with it. RESULTS: The review included 109 references and showed a consistent potential in noninvasive technologies to reduce costs and maintain or improve the quality of care. CONCLUSIONS: TBI prevalence has increased with a disproportionate health care burden in the last decades. Noninvasive monitoring techniques seem to be effective in reducing TBI health care costs, with few limitations, especially the need for more supporting scientific evidence. The undeniable clinical and financial potential of these techniques is compelling to further investigate their role in TBI management, as well as the creation of more comprehensive monitoring models to the understanding of complex phenomena occurring in the injured brain.


Assuntos
Lesões Encefálicas Traumáticas , Custos de Cuidados de Saúde , Humanos , Lesões Encefálicas Traumáticas/economia , Lesões Encefálicas Traumáticas/terapia , Estados Unidos , Pressão Intracraniana/fisiologia
2.
WIREs Mech Dis ; 16(2): e1635, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38059513

RESUMO

Mental illnesses have a huge impact on individuals, families, and society, so there is a growing need for more efficient treatments. In this context, brain-computer interface (BCI) technology has the potential to revolutionize the options for neuropsychiatric therapies. However, the development of BCI-based therapies faces enormous challenges, such as power dissipation constraints, lack of credible feedback mechanisms, uncertainty of which brain areas and frequencies to target, and even which patients to treat. Some of these setbacks are due to the large gap in our understanding of brain function. In recent years, large-scale genomic analyses uncovered an unprecedented amount of information regarding the biology of the altered brain function observed across the psychopathology spectrum. We believe findings from genetic studies can be useful to refine BCI technology to develop novel treatment options for mental illnesses. Here, we assess the latest advancements in both fields, the possibilities that can be generated from their intersection, and the challenges that these research areas will need to address to ensure that translational efforts can lead to effective and reliable interventions. Specifically, starting from highlighting the overlap between mechanisms uncovered by large-scale genetic studies and the current targets of deep brain stimulation treatments, we describe the steps that could help to translate genomic discoveries into BCI targets. Because these two research areas have not been previously presented together, the present article can provide a novel perspective for scientists with different research backgrounds. This article is categorized under: Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Biomedical Engineering.


Assuntos
Interfaces Cérebro-Computador , Estimulação Encefálica Profunda , Transtornos Mentais , Humanos , Encéfalo/fisiologia , Transtornos Mentais/genética , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...