Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(3): 298, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38396233

RESUMO

To anticipate disasters (drought, floods, etc.) caused by environmental forcing and reduce their impacts on its fragile economy, sub-Saharan Africa needs a good knowledge of the availability of current water resources and reliable hydroclimatic forecasts. This study has an objective to quantify the availability of water resources in the Nyong basin and predict its future evolution (2024-2050). For this, the SWAT (Soil and Water Assessment Tool) model was used. The performance of this model is satisfactory in calibration (2001-2005) and validation (2006-2010), with R2, NSE, and KGE greater than 0.64. Biases of - 11.8% and - 13.9% in calibration and validation also attest to this good performance. In the investigated basin, infiltration (GW_RCH), evapotranspiration (ETP), surface runoff (SURQ), and water yield (WYLD) are greater in the East, probably due to more abundant rainfall in this part. The flows and sediment load (SED) are greater in the middle zone and in the Southwest of the basin, certainly because of the flat topography of this part, which corresponds to the valley floor. Two climate models (CCCma and REMO) predict a decline in water resources in this basin, and two others (HIRHAM5 and RCA4) are the opposite. However, based on a statistical study carried out over the historical period (2001-2005), the CCCma model seems the most reliable. It forecasts a drop in precipitation and runoff, which do not exceed - 19% and - 18%, respectively, whatever the emission scenario (RCP4.5 or RCP8.5). Climate variability (CV) is the only forcing whose impact is visible in the dynamics of current and future flows, due to the modest current (increase of + 102 km2 in builds and roads) and future (increase of + 114 km2 in builds and roads) changes observed in the evolution of land use and land cover (LULC). The results of this study could contribute to improving water resource management in the basin studied and the region.


Assuntos
Monitoramento Ambiental , Recursos Hídricos , Camarões , Hidrologia , Rios , Florestas , Mudança Climática , Água
2.
Front Robot AI ; 9: 800232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187094

RESUMO

Current surgical robotic systems are teleoperated and do not have force feedback. Considerable practice is required to learn how to use visual input such as tissue deformation upon contact as a substitute for tactile sense. Thus, unnecessarily high forces are observed in novices, prior to specific robotic training, and visual force feedback studies demonstrated reduction of applied forces. Simulation exercises with realistic suturing tasks can provide training outside the operating room. This paper presents contributions to realistic interactive suture simulation for training of suturing and knot-tying tasks commonly used in robotically-assisted surgery. To improve the realism of the simulation, we developed a global coordinate wire model with a new constraint development for the elongation. We demonstrated that a continuous modeling of the contacts avoids instabilities during knot tightening. Visual cues are additionally provided, based on the computation of mechanical forces or constraints, to support learning how to dose the forces. The results are integrated into a powerful system-agnostic simulator, and the comparison with equivalent tasks performed with the da Vinci Xi system confirms its realism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...