Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gastric Cancer ; 26(6): 904-917, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37572185

RESUMO

BACKGROUND: Peroxisome proliferator-activated receptor delta (PPARδ) promotes inflammation and carcinogenesis in many organs, but the underlying mechanisms remains elusive. In stomachs, PPARδ significantly increases chemokine Ccl20 expression in gastric epithelial cells while inducing gastric adenocarcinoma (GAC). CCR6 is the sole receptor of CCL20. Here, we examine the role of PPARδ-mediated Ccl20/Ccr6 signaling in GAC carcinogenesis and investigate the underlying mechanisms. METHODS: The effects of PPARδ inhibition by its specific antagonist GSK3787 on GAC were examined in the mice with villin-promoter-driven PPARδ overexpression (PpardTG). RNAscope Duplex Assays were used to measure Ccl20 and Ccr6 levels in stomachs and spleens. Subsets of stomach-infiltrating immune cells were measured via flow cytometry or immunostaining in PpardTG mice fed GSK3787 or control diet. A panel of 13 optimized proinflammatory chemokines in mouse sera were quantified by an enzyme-linked immunosorbent assay. RESULTS: GSK3787 significantly suppressed GAC carcinogenesis in PpardTG mice. PPARδ increased Ccl20 level to chemoattract Ccr6+ immunosuppressive cells, including tumor-associated macrophages, myeloid-derived suppressor cells and T regulatory cells, but decreased CD8+ T cells in gastric tissues. GSK3787 suppressed PPARδ-induced gastric immunosuppression by inhibiting Ccl20/Ccr6 axis. Furthermore, Ccl20 protein levels increased in sera of PpardTG mice starting at the age preceding gastric tumor development and further increased with GAC progression as the mice aged. GSK3787 decreased the PPARδ-upregulated Ccl20 levels in sera of the mice. CONCLUSIONS: PPARδ dysregulation of Ccl20/Ccr6 axis promotes GAC carcinogenesis by remodeling gastric tumor microenvironment. CCL20 might be a potential biomarker for the early detection and progression of GAC.


Assuntos
Adenocarcinoma , PPAR delta , Neoplasias Gástricas , Humanos , Animais , Camundongos , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , PPAR delta/genética , Linfócitos T CD8-Positivos , Microambiente Tumoral , Carcinogênese , Receptores CCR6/genética , Receptores CCR6/metabolismo
2.
Nat Commun ; 13(1): 2665, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562376

RESUMO

Pancreatic intraepithelial neoplasia (PanIN) is a precursor of pancreatic ductal adenocarcinoma (PDAC), which commonly occurs in the general populations with aging. Although most PanIN lesions (PanINs) harbor oncogenic KRAS mutations that initiate pancreatic tumorigenesis; PanINs rarely progress to PDAC. Critical factors that promote this progression, especially targetable ones, remain poorly defined. We show that peroxisome proliferator-activated receptor-delta (PPARδ), a lipid nuclear receptor, is upregulated in PanINs in humans and mice. Furthermore, PPARδ ligand activation by a high-fat diet or GW501516 (a highly selective, synthetic PPARδ ligand) in mutant KRASG12D (KRASmu) pancreatic epithelial cells strongly accelerates PanIN progression to PDAC. This PPARδ activation induces KRASmu pancreatic epithelial cells to secrete CCL2, which recruits immunosuppressive macrophages and myeloid-derived suppressor cells into pancreas via the CCL2/CCR2 axis to orchestrate an immunosuppressive tumor microenvironment and subsequently drive PanIN progression to PDAC. Our data identify PPARδ signaling as a potential molecular target to prevent PDAC development in subjects harboring PanINs.


Assuntos
Carcinoma in Situ , Carcinoma Ductal Pancreático , PPAR delta , Neoplasias Pancreáticas , Animais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/patologia , Humanos , Ligantes , Camundongos , PPAR delta/genética , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Microambiente Tumoral/genética , Neoplasias Pancreáticas
3.
Cell Rep ; 32(7): 108049, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814052

RESUMO

APC mutation activation of Wnt/ß-catenin drives initiation of colorectal carcinogenesis (CRC). Additional factors potentiate ß-catenin activation to promote CRC. Western diets are enriched in linoleic acid (LA); LA-enriched diets promote chemically induced CRC in rodents. 15-Lipoxygenase-1 (15-LOX-1), the main LA-metabolizing enzyme, is transcriptionally silenced during CRC. Whether LA and 15-LOX-1 affect Wnt/ß-catenin signaling is unclear. We report that high dietary LA promotes CRC in mice treated with azoxymethane or with an intestinally targeted Apc mutation (ApcΔ580) by upregulating Wnt receptor LRP5 protein expression and ß-catenin activation. 15-LOX-1 transgenic expression in mouse intestinal epithelial cells suppresses LRP5 protein expression, ß-catenin activation, and CRC. 15-LOX-1 peroxidation of LA in phosphatidylinositol-3-phosphates (PI3P_LA) leads to PI3P_13-HODE formation, which decreases PI3P binding to SNX17 and LRP5 and inhibits LRP5 recycling from endosomes to the plasma membrane, thereby increasing LRP5 lysosomal degradation. This regulatory mechanism of LRP5/Wnt/ß-catenin signaling could be therapeutically targeted to suppress CRC.


Assuntos
Neoplasias do Colo/genética , Ácido Linoleico/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo , Animais , Humanos , Camundongos , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...