Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Biomolecules ; 14(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38785934

RESUMO

Adverse experiences (e.g., acute stress) and alcohol misuse can both impair skeletal muscle homeostasis, resulting in reduced protein synthesis and greater protein breakdown. Exposure to acute stress is a significant risk factor for engaging in alcohol misuse. However, little is known about how these factors together might further affect skeletal muscle health. To that end, this study investigated the effects of acute stress exposure followed by a period of binge-patterned alcohol drinking on signaling factors along mouse skeletal muscle protein synthesis (MPS) and degradation (MPD) pathways. Young adult male C57BL/6J mice participated in the Drinking in the Dark paradigm, where they received 2-4 h of access to 20% ethanol (alcohol group) or water (control group) for four days to establish baseline drinking levels. Three days later, half of the mice in each group were either exposed to a single episode of uncontrollable tail shocks (acute stress) or remained undisturbed in their home cages (no stress). Three days after stress exposure, mice received 4 h of access to 20% ethanol (alcohol) to model binge-patterned alcohol drinking or water for ten consecutive days. Immediately following the final episode of alcohol access, mouse gastrocnemius muscle was extracted to measure changes in relative protein levels along the Akt-mTOR MPS, as well as the ubiquitin-proteasome pathway (UPP) and autophagy MPD pathways via Western blotting. A single exposure to acute stress impaired Akt singling and reduced rates of MPS, independent of alcohol access. This observation was concurrent with a potent increase in heat shock protein seventy expression in the muscle of stressed mice. Alcohol drinking did not exacerbate stress-induced alterations in the MPS and MPD signaling pathways. Instead, changes in the MPS and MPD signaling factors due to alcohol access were primarily observed in non-stressed mice. Taken together, these data suggest that exposure to a stressor of sufficient intensity may cause prolonged disruptions to signaling factors that impact skeletal muscle health and function beyond what could be further induced by periods of alcohol misuse.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Camundongos Endogâmicos C57BL , Proteínas Musculares , Músculo Esquelético , Proteólise , Animais , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Camundongos , Proteínas Musculares/metabolismo , Proteínas Musculares/biossíntese , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Etanol , Estresse Psicológico/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo
2.
Exerc Sport Sci Rev ; 52(1): 31-38, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38126403

RESUMO

Duchenne muscular dystrophy (DMD), caused by deficiency of functional dystrophin protein, is a fatal, progressive muscle disease that frequently includes metabolic dysregulation. Herein, we explore the physiologic consequences of dystrophin deficiency within the context of obesity and insulin resistance. We hypothesized that dystrophin deficiency increases the frequency of insulin resistance, and insulin resistance potentiates muscle pathology caused by dystrophin deficiency.


Assuntos
Resistência à Insulina , Distrofia Muscular de Duchenne , Humanos , Distrofina/metabolismo , Músculo Esquelético/metabolismo
3.
Am J Physiol Regul Integr Comp Physiol ; 325(6): R692-R711, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37811713

RESUMO

Duchenne muscular dystrophy (DMD), a progressive muscle disease caused by the absence of functional dystrophin protein, is associated with multiple cellular, physiological, and metabolic dysfunctions. As an added complication to the primary insult, obesity/insulin resistance (O/IR) is frequently reported in patients with DMD; however, how IR impacts disease severity is unknown. We hypothesized a high-fat, high-sucrose diet (HFHSD) would induce O/IR, exacerbate disease severity, and cause metabolic alterations in dystrophic mice. To test this hypothesis, we treated 7-wk-old mdx (disease model) and C57 mice with a control diet (CD) or an HFHSD for 15 wk. The HFHSD induced insulin resistance, glucose intolerance, and hyperglycemia in C57 and mdx mice. Of note, mdx mice on CD were also insulin resistant. In addition, visceral adipose tissue weights were increased with HFHSD in C57 and mdx mice though differed by genotype. Serum creatine kinase activity and histopathological analyses using Masson's trichrome staining in the diaphragm indicated muscle damage was driven by dystrophin deficiency but was not augmented by diet. In addition, markers of inflammatory signaling, mitochondrial abundance, and autophagy were impacted by disease but not diet. Despite this, in addition to disease signatures in CD-fed mice, metabolomic and lipidomic analyses demonstrated a HFHSD caused some common changes in C57 and mdx mice and some unique signatures of O/IR within the context of dystrophin deficiency. In total, these data revealed that in mdx mice, 15 wk of HFHSD did not overtly exacerbate muscle injury but further impaired the metabolic status of dystrophic muscle.


Assuntos
Resistência à Insulina , Distrofia Muscular de Duchenne , Humanos , Animais , Camundongos , Camundongos Endogâmicos mdx , Distrofina/genética , Distrofina/metabolismo , Músculo Esquelético/metabolismo , Sacarose/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças
4.
Front Behav Neurosci ; 17: 1169151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37273279

RESUMO

Introduction: Sedentary lifestyles have reached epidemic proportions world-wide. A growing body of literature suggests that exposures to adverse experiences (e.g., psychological traumas) are a significant risk factor for the development of physically inactive lifestyles. However, the biological mechanisms linking prior stress exposure and persistent deficits in physical activity engagement remains poorly understood. Methods: The purpose of this study was twofold. First, to identify acute stress intensity thresholds that elicit long-term wheel running deficits in rats. To that end, young adult male rats were exposed to a single episode of 0, 50, or 100 uncontrollable tail shocks and then given free access to running wheels for 9 weeks. Second, to identify stress-induced changes to central monoamine neurotransmitters and peripheral muscle physiology that may be maladaptive to exercise output. For this study, rats were either exposed to a single episode of uncontrollable tail shocks (stress) or left undisturbed in home cages (unstressed). Eight days later, monoamine-related neurochemicals were quantified by ultra-high performance liquid chromatography (UHPLC) across brain reward, motor, and emotion structures immediately following a bout of graded treadmill exercise controlled for duration and intensity. Additionally, protein markers of oxidative stress, inflammation, and metabolic activity were assessed in the gastrocnemius muscle by Western blot. Results: For experiment 1, stress exposure caused a shock number-dependent two to fourfold decrease in wheel running distance across the entire duration of the study. For experiment 2, stress exposure curbed an exercise-induced increase of dopamine (DA) turnover measures in the prefrontal cortex and hippocampus, and augmented serotonin (5HT) turnover in the hypothalamus and remaining cortical area. However, stress exposure also caused several monoaminergic changes independent of exercise that could underlie impaired motivation for physical activity, including a mild dopamine deficiency in the striatal area. Finally, stress potently increased HSP70 and lowered SOD2 protein concentrations in the gastrocnemius muscle, which may indicate prolonged oxidative stress. Discussion: These data support some of the possible central and peripheral mechanisms by which exposure to adverse experiences may chronically impair physical activity engagement.

5.
Front Physiol ; 14: 1152576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179835

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive muscle disease that results in muscle wasting, wheelchair dependence, and eventual death due to cardiac and respiratory complications. In addition to muscle fragility, dystrophin deficiency also results in multiple secondary dysfunctions, which may lead to the accumulation of unfolded proteins causing endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). The purpose of this investigation was to understand how ER stress and the UPR are modified in muscle from D2-mdx mice, an emerging DMD model, and from humans with DMD. We hypothesized that markers of ER stress and the UPR are upregulated in D2-mdx and human dystrophic muscles compared to their healthy counterparts. Immunoblotting in diaphragms from 11-month-old D2-mdx and DBA mice indicated increased ER stress and UPR in dystrophic diaphragms compared to healthy, including increased relative abundance of ER stress chaperone CHOP, canonical ER stress transducers ATF6 and pIRE1α S724, and transcription factors that regulate the UPR such as ATF4, XBP1s, and peIF2α S51. The publicly available Affymetrix dataset (GSE38417) was used to analyze the expression of ER stress and UPR-related transcripts and processes. Fifty-eight upregulated genes related to ER stress and the UPR in human dystrophic muscles suggest pathway activation. Further, based on analyses using iRegulon, putative transcription factors that regulate this upregulation profile were identified, including ATF6, XBP1, ATF4, CREB3L2, and EIF2AK3. This study adds to and extends the emerging knowledge of ER stress and the UPR in dystrophin deficiency and identifies transcriptional regulators that may be responsible for these changes and be of therapeutic interest.

6.
Front Physiol ; 13: 866792, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045751

RESUMO

Age-related chronic diseases are among the most common causes of mortality and account for a majority of global disease burden. Preventative lifestyle behaviors, such as regular exercise, play a critical role in attenuating chronic disease burden. However, the exact mechanism behind exercise as a form of preventative medicine remains poorly defined. Interestingly, many of the physiological responses to exercise are comparable to aging. This paper explores an overarching hypothesis that exercise protects against aging/age-related chronic disease because the physiological stress of exercise mimics aging. Acute exercise transiently disrupts cardiovascular, musculoskeletal, and brain function and triggers a substantial inflammatory response in a manner that mimics aging/age-related chronic disease. Data indicate that select acute exercise responses may be similar in magnitude to changes seen with +10-50 years of aging. The initial insult of the age-mimicking effects of exercise induces beneficial adaptations that serve to attenuate disruption to successive "aging" stimuli (i.e., exercise). Ultimately, these exercise-induced adaptations reduce the subsequent physiological stress incurred from aging and protect against age-related chronic disease. To further examine this hypothesis, future work should more intricately describe the physiological signature of different types/intensities of acute exercise in order to better predict the subsequent adaptation and chronic disease prevention with exercise training in healthy and at-risk populations.

7.
Front Physiol ; 13: 842819, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936891

RESUMO

In obesity, plasma free fatty acids (FFAs) levels are elevated due to enlarged adipose tissue mass. Saturated fatty acids can induce prolonged ER stress and insulin resistance. Double-stranded RNA-dependent Protein Kinase (PKR) is activated under stress conditions in skeletal muscle. The current study aimed to investigate the effect of imoxin (IMX), a selective PKR inhibitor, on palmitate-induced ER stress and insulin resistance in C2C12 myotubes. Cells were treated with 5 µM imoxin and exposed to 0.5 mM bovine serum albumin (BSA)-conjugated PA for 24 h. A subset of cells was stimulated with 50 nM insulin for the last 15 min. Glucose uptake was monitored and protein levels involved in ER stress and insulin signaling were measured by Western blotting. Palmitate stimulated PKR phosphorylation, which was prevented by imoxin. Moreover, imoxin reduced protein levels of ER stress-related markers including glucose-regulating protein 78 (GRP78), CCAAT-enhancer-binding protein homologous protein (CHOP), activating transcription factor 6 (ATF6) and spliced X-box binding protein 1 (XBP-1s) which were induced by palmitate. Furthermore, imoxin ameliorated palmitate-induced suppression of phospho-insulin receptor beta (p-IRß) and Akt phosphorylation in myotubes. In addition, imoxin promoted glucose uptake in response to insulin under palmitate exposure. Furthermore, imoxin reduced phospho-c-Jun N-terminal kinase (p-JNK) induced by palmitate treatment. These findings suggest that imoxin may protect against saturated fatty acid-induced ER stress and insulin resistance in skeletal muscle, which are potentially mediated by PKR.

8.
Alcohol ; 104: 45-52, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35926812

RESUMO

Excessive ethanol ingestion can reduce skeletal muscle protein synthesis (MPS) through the disruption of signaling along the Akt-mTOR pathway and increase muscle protein degradation (MPD) through the Ubiquitin Proteasome Pathway (UPP) and autophagy. Identification of interventions that curb the disrupting effects of alcohol misuse on MPS and MPD are of central importance for the prevention of chronic health complications that arise from muscle loss. Physical activity is one potential strategy to combat the deleterious effects of alcohol on skeletal muscle. Therefore, the purpose of this study was to investigate the interaction between daily wheel running and binge-patterned ethanol consumption, through episodes of voluntary binge-patterned ethanol drinking, on signaling factors along the Akt-mTOR, Ubiquitin-Proteasome, and autophagy pathways. Adult female C57BL/6J mice received daily access to cages with or without running wheels for 2.5 h/day for five weeks. During the final five days of the study, mice received 2-4 h of daily access to sipper tubes containing water (n = 14 sedentary; n = 15 running) or 20% ethanol (n = 14 sedentary; n = 16 running) 30 min after running wheel access, using the "Drinking in the Dark" (DID) model of binge-patterned ethanol consumption. Immediately after the final episode of DID, gastrocnemius muscle was extracted. Western blotting was performed to measure proteins along Akt-mTOR, Ubiquitin-Proteasome, and autophagy pathways, and PCR was used to assess mRNA expression of atrogenes. Ethanol access increased expression of MAFbx by 82% (p = 0.048), but did not robustly influence Akt-mTOR or UPP signaling. Daily wheel access did not prevent alcohol-induced MAFbx expression; however, ethanol access decreased the phosphorylation of p70S6K by 45% in running mice (p = 0.020). These results suggest that physical activity may be insufficient to prevent alcohol-induced changes to signaling factors along pathways involved in muscle loss. Instead, binge-patterned ethanol ingestion may impair the benefits of physical activity on factors involved in MPS.


Assuntos
Proteínas Musculares , Complexo de Endopeptidases do Proteassoma , Camundongos , Feminino , Animais , Proteínas Musculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Atividade Motora/fisiologia , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo , Etanol/metabolismo , Músculo Esquelético/metabolismo , Ingestão de Alimentos , Ubiquitinas/metabolismo
9.
Med Sci Sports Exerc ; 54(8): 1288-1299, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35389948

RESUMO

PURPOSE: Chronic exercise training is known to induce metabolic changes, but whether these adaptations extend to lymphocytes and how this may affect immune function remains largely unknown. This study was conducted to determine the extent to which mitochondrial characteristics of naïve T cells differ according to fitness status and to further examine the energy production pathways of cells from aerobically trained and inactive participants. METHODS: Blood was collected from 30 aerobically active (>6 h·wk -1 ) or inactive (<90 min·wk -1 ) men and women. Naïve T cell mitochondrial mass, membrane potential, and biogenesis were assessed with flow cytometry. Participants completed a treadmill maximal oxygen consumption (V̇O 2peak ) test and wore a physical activity monitor for 1 wk. In a subset of participants, naïve CD8 + T cell activation-induced glycolytic and mitochondrial ATP production was measured. RESULTS: Active participants exhibited 16.7% more naïve CD8 + T cell mitochondrial mass ( P = 0.046), 34% greater daily energy expenditure ( P < 0.001), and 39.6% higher relative V̇O 2peak ( P < 0.001), along with 33.9% lower relative body fatness ( P < 0.001). Among all participants, naïve CD8 + T cell mitochondrial mass was correlated with estimated energy expenditure ( r = 0.36, P = 0.048) and V̇O 2peak ( r = 0.47, P = 0.009). There were no significant differences in ATP production, mitochondrial biogenesis, or mitochondrial membrane potential between active and inactive groups. CONCLUSIONS: This is the first study to examine the effects of aerobic exercise training status on metabolic parameters within human naïve T cells. Findings suggest that mitochondrial adaptations in certain immune cell types are positively associated with aerobic fitness and energy expenditure. This study provides a foundation for future development of prophylactic and therapeutic interventions targeting specific immune cell subsets to improve the immune response and overall health.


Assuntos
Exercício Físico , Linfócitos T , Trifosfato de Adenosina , Adulto , Metabolismo Energético , Exercício Físico/fisiologia , Teste de Esforço , Feminino , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Aptidão Física/fisiologia , Comportamento Sedentário
10.
Cell Biochem Biophys ; 80(2): 367-373, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35122618

RESUMO

Short bouts of heat can induce a hormetic stress response, whereas prolonged or excessive exposure can elicit detrimental effects. We previously demonstrated an increase in autophagic signaling in C2C12 myotubes in response to 1 h of heat at 40 °C. In opposition, longer durations of heat exposure (e.g., 12 and 24 h) lead to an accumulation of autophagasomes and elevations in markers of cellular inflammation, oxidative stress, and apoptosis. Whether a longer, yet moderate, duration of 2 h of heat further enhances autophagic flux and attenuates stress and inflammatory signaling, or transitions the cell toward a dysregulation of autophagy is unclear. In this study, C2C12 myotubes were maintained at 37 °C or exposed to 40 °C (HT) for 2 h, and harvested immediately or following 2, 8, or 24 h of recovery. Two hours of HT immediately increased pAMPK (T172; p = 0.001), and subsequently increased pULK1 (S555) at 2 h of recovery (p = 0.028). LC3 II was increased at 8 h (p = 0.043) and 24 h (p = 0.015) of recovery, whereas p62 was elevated at 2 h (p = 0.002) and 8 h (p < 0.001) of recovery, but returned to baseline by 24 h. In Bafilomycin A1 treated cells, p62 was further increased immediately following HT (p = 0.041). There was also a significant elevation in p-p38 (Thr180/Try182), pJNK (Thr183/Tyr185), and pNFκB (Ser536). These findings suggest that as short as 2 h of heat exposure contributes to cell stress and accumulation of autophagasomes in skeletal muscle.


Assuntos
Resposta ao Choque Térmico , Fibras Musculares Esqueléticas , Autofagia , Proteínas Quinases Ativadas por Mitógeno , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético , Transdução de Sinais
12.
Am J Physiol Cell Physiol ; 321(2): C221-C229, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077277

RESUMO

Prolonged endoplasmic reticulum (ER) stress can mediate inflammatory myopathies and insulin signaling pathways. The double-stranded RNA (dsRNA)-activated protein kinase R (PKR) has been implicated in skeletal muscle dysfunction. However, pathological roles of PKR in ER stress in muscle are not fully understood. The current study aimed to investigate the effect of imoxin (IMX), a selective PKR inhibitor, on tunicamycin (TN)-induced promotion of ER stress and suppression of insulin signaling in C2C12 myotubes. Cells were pretreated with 5 µM IMX for 1 h and exposed to 0.5 µg/mL TN for 23 h. A subset of cells was stimulated with 100 nM insulin for the last 15 min. mRNA expression and protein levels involved in ER stress were measured by RT-PCR and Western blotting, respectively. TN significantly augmented PKR phosphorylation by 231%, which was prevented by IMX. In addition, IMX reduced mRNA and protein levels of ER stress-related markers, including CCAAT-enhancer-binding protein homologous protein (CHOP, mRNA: 95% decrease; protein: 98% decrease), activating transcription factor 4 (ATF4, mRNA: 69% decrease; protein: 99% decrease), cleavage of ATF6, and spliced X-box-binding protein 1 (XBP-1s, mRNA: 88% decrease; protein: 79% decrease), which were induced by TN. Furthermore, IMX ameliorated TN-induced suppression of phospho-insulin receptor ß (317% increase) and Akt phosphorylation (by 36% at Ser473 and 30% at Thr308) in myotubes, while augmenting insulin-stimulated AS160 phosphorylation and glucose uptake (by ∼30%). These findings suggest that IMX may protect against TN-induced skeletal muscle ER stress and insulin resistance, which are potentially mediated by PKR.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Imidazóis/farmacologia , Indóis/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Animais , Retículo Endoplasmático/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tunicamicina/metabolismo , Tunicamicina/farmacologia
13.
Front Nutr ; 8: 652192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041258

RESUMO

Eggs are protein-rich, nutrient-dense, and contain bioactive ingredients that have been shown to modify gene expression and impact health. To understand the effects of egg consumption on tissue-specific mRNA and microRNA expression, we examined the role of whole egg consumption (20% protein, w/w) on differentially expressed genes (DEGs) between rat (n = 12) transcriptomes in the prefrontal cortex (PFC), liver, kidney, and visceral adipose tissue (VAT). Principal component analysis with hierarchical clustering was used to examine transcriptome profiles between dietary treatment groups. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis as well as genetic network and disease enrichment analysis to examine which metabolic pathways were the most predominantly altered in each tissue. Overall, our data demonstrates that whole egg consumption for 2 weeks modified the expression of 52 genes in the PFC, 22 genes in VAT, and two genes in the liver (adj p < 0.05). Additionally, 16 miRNAs were found to be differentially regulated in the PFC, VAT, and liver, but none survived multiple testing correction. The main pathways influenced by WE consumption were glutathione metabolism in VAT and cholesterol biosynthesis in the PFC. These data highlight key pathways that may be involved in diseases and are impacted by acute consumption of a diet containing whole eggs.

14.
Front Behav Neurosci ; 15: 639790, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716684

RESUMO

Monoamine neurotransmitter activity in brain reward, limbic, and motor areas play key roles in the motivation to misuse alcohol and can become modified by exercise in a manner that may affect alcohol craving. This study investigated the influence of daily moderate physical activity on monoamine-related neurochemical concentrations across the mouse brain in response to high volume ethanol ingestion. Adult female C57BL/6J mice were housed with or without 2.5 h of daily access to running wheels for 30 days. On the last 5 days, mice participated in the voluntary binge-like ethanol drinking procedure, "Drinking in the dark" (DID). Mice were sampled immediately following the final episode of DID. Monoamine-related neurochemical concentrations were measured across brain regions comprising reward, limbic, and motor circuits using ultra High-Performance Liquid Chromatography (UHPLC). The results suggest that physical activity status did not influence ethanol ingestion during DID. Moreover, daily running wheel access only mildly influenced alcohol-related norepinephrine concentrations in the hypothalamus and prefrontal cortex, as well as serotonin turnover in the hippocampus. However, access to alcohol during DID eliminated wheel running-related decreases of norepinephrine, serotonin, and 5-HIAA content in the hypothalamus, but also to a lesser extent for norepinephrine in the hippocampus and caudal cortical areas. Finally, alcohol access increased serotonin and dopamine-related neurochemical turnover in the striatum and brainstem areas, regardless of physical activity status. Together, these data provide a relatively thorough assessment of monoamine-related neurochemical levels across the brain in response to voluntary binge-patterned ethanol drinking, but also adds to a growing body of research questioning the utility of moderate physical activity as an intervention to curb alcohol abuse.

15.
PLoS One ; 16(1): e0244795, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33412561

RESUMO

BACKGROUND: Impaired perfusion indices signal potential microvascular dysfunction preceding atherosclerosis and other cardiometabolic pathologies. Post-occlusive reactive hyperemia (PORH), a vasodilatory response following a mechanically induced ischemia, is a transient increase in perfusion and can assess microvascular function. The greatest blood flow change corresponding to the first minute of hyperemia (represented by time-to-peak, hyperemic velocity, AUC within 1st min) has been shown to indicate microvascular dysfunction. However, the reproducibility of these temporal kinetic indices of the PORH response is unknown. Our aim was to examine the inter- and intra-day reproducibility and standardization of reactive hyperemia, with emphasis on the kinetic indices of PORH, using laser speckle contrast imaging (LSCI) technique. METHODS AND RESULTS: Seventeen healthy adults (age = 24 ± 3 years) completed three PORH bouts over two lab visits. LSCI region of interest was a standardized 10 cm region on the dominant ventral forearm. A 5-min brachial artery occlusion period induced by inflating an arm cuff to 200 mmHg, preceded a 4-min hyperemic period. Inter- and intra-day reliability and reproducibility of cutaneous vascular conductance (LSCI flux / mean arterial pressure) were determined using intraclass correlation (ICC) and coefficient of variation (CV%). Maximal flow and area under the curve standardized to zero perfusion showed intra- and inter-day reliability (ICC > 0.70). Time to maximal flow (TMF) was not reproducible (inter-day CV = 18%). However, alternative kinetic indices such as 1-min AUC and overshoot rate-of-change (ORC), represented as a piecewise function (at 5s, 10s, 15s, and 20s into hyperemia), were reproducible (CV< 11%). Biological zero was a reliable normalization point. CONCLUSION: PORH measured with LSCI is a reliable assessment of microvascular function. However, TMF or its derived hyperemic velocity are not recommended for longitudinal assessment. Piecewise ORC and 1-min AUC are reliable alternatives to assess the kinetic response of PORH.


Assuntos
Hiperemia/diagnóstico por imagem , Imagem de Contraste de Manchas a Laser/métodos , Adulto , Área Sob a Curva , Velocidade do Fluxo Sanguíneo/fisiologia , Feminino , Antebraço/irrigação sanguínea , Voluntários Saudáveis , Hemodinâmica , Humanos , Isquemia/fisiopatologia , Fluxometria por Laser-Doppler/métodos , Masculino , Microcirculação/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Reprodutibilidade dos Testes , Vasodilatação/fisiologia , Adulto Jovem
16.
PLoS One ; 15(11): e0240885, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33141822

RESUMO

Nutrigenomic evidence supports the idea that Type 2 Diabetes Mellitus (T2DM) arises due to the interactions between the transcriptome, individual genetic profiles, lifestyle, and diet. Since eggs are a nutrient dense food containing bioactive ingredients that modify gene expression, our goal was to examine the role of whole egg consumption on the transcriptome during T2DM. We analyzed whether whole egg consumption in Zucker Diabetic Fatty (ZDF) rats alters microRNA and mRNA expression across the adipose, liver, kidney, and prefrontal cortex tissue. Male ZDF (fa/fa) rats (n = 12) and their lean controls (fa/+) (n = 12) were obtained at 6 wk of age. Rats had ad libitum access to water and were randomly assigned to a modified semi-purified AIN93G casein-based diet or a whole egg-based diet, both providing 20% protein (w/w). TotalRNA libraries were prepared using QuantSeq 3' mRNA-Seq and Lexogen smallRNA library prep kits and were further sequenced on an Illumina HighSeq3000. Differential gene expression was conducted using DESeq2 in R and Benjamini-Hochberg adjusted P-values controlling for false discovery rate at 5%. We identified 9 microRNAs and 583 genes that were differentially expressed in response to 8 wk of consuming whole egg-based diets. Kyto Encyclopedia of Genes and Genomes/Gene ontology pathway analyses demonstrated that 12 genes in the glutathione metabolism pathway were upregulated in the liver and kidney of ZDF rats fed whole egg. Whole egg consumption primarily altered glutathione pathways such as conjugation, methylation, glucuronidation, and detoxification of reactive oxygen species. These pathways are often negatively affected during T2DM, therefore this data provides unique insight into the nutrigenomic response of dietary whole egg consumption during the progression of T2DM.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Ovos , Glutationa/metabolismo , Nutrigenômica , Animais , Diabetes Mellitus Tipo 2/dietoterapia , Ovos/efeitos adversos , Perfilação da Expressão Gênica , Masculino , Redes e Vias Metabólicas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Ratos Zucker , Distribuição Tecidual , Regulação para Cima
17.
Biomed Pharmacother ; 128: 110238, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32450522

RESUMO

Muscle atrophy is the loss of skeletal muscle mass during several pathological conditions such as long-term fasting, aging, cancer, diabetes, sepsis and immune disorders. Glucocorticoids are known to trigger skeletal muscle atrophy. Dexamethasone (DEX), a synthetic glucocorticoid, induces skeletal muscle atrophy by suppression of protein synthesis and promotion of protein degradation. The double-stranded RNA (dsRNA)-activated protein kinase R (PKR) plays a significant role in mediating lipopolysaccharide-induced inflammation. However, pathological roles of PKR in muscle atrophy are not fully understood. The current study aimed to investigate the effect of imoxin, a PKR inhibitor, on DEX-induced muscle atrophy in C2C12 myotubes. Myotubes were incubated with imoxin at different concentrations with or without 5 µM DEX for 24 h. In the current study, imoxin treatment significantly reduced protein levels of MuRF1 and MAFbx induced by DEX by 88 ± 2% and MAFbx by 99 ± 0%, respectively. Moreover, 5 µM imoxin treatment reduced protein ubiquitination by 42 ± 4% and protein content of nuclear FoxO3α (77 ± 4%) in presence of DEX. Furthermore, 5 µM imoxin treatment stimulated Akt phosphorylation (195 ± 5%), mTOR phosphorylation (171 ± 21 %) and p70S6K1 phosphorylation (314 ± 31 %) under DEX-treated condition even though DEX treatment did not suppressed Akt/mTOR/p70S6K1 axis. These findings suggest that imoxin may protect against DEX-induced skeletal muscle atrophy by alleviating muscle specific E3 ubiquitin ligases and imoxin alone may promote protein synthesis via Akt/mTOR/S6K1 axis in muscle cells.


Assuntos
Anabolizantes/farmacologia , Dexametasona/toxicidade , Imidazóis/farmacologia , Indóis/farmacologia , Atrofia Muscular/prevenção & controle , Mioblastos Esqueléticos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , eIF-2 Quinase/antagonistas & inibidores , Animais , Linhagem Celular , Proteína Forkhead Box O3/metabolismo , Camundongos , Proteínas Musculares/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/enzimologia , Atrofia Muscular/patologia , Mioblastos Esqueléticos/enzimologia , Mioblastos Esqueléticos/patologia , Fosforilação , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas com Motivo Tripartido/metabolismo , eIF-2 Quinase/metabolismo
18.
Curr Dev Nutr ; 3(4): nzz015, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31008440

RESUMO

BACKGROUND: The literature regarding the relation between egg consumption and type 2 diabetes (T2D) is inconsistent and there is limited evidence pertaining to the impact of egg consumption on measures of insulin sensitivity. OBJECTIVES: The aim of this study was to investigate the effect of dietary whole egg on metabolic biomarkers of insulin resistance in T2D rats. METHODS: Male Zucker diabetic fatty (ZDF) rats (n = 12; 6 wk of age) and age-matched lean controls (n = 12) were randomly assigned to be fed a casein- or whole egg-based diet. At week 5 of dietary treatment, an insulin tolerance test (ITT) was performed on all rats and blood glucose was measured by glucometer. After 7 wk of dietary treatment, rats were anesthetized and whole blood was collected via a tail vein bleed. Following sedation, the extensor digitorum longus muscle was removed before and after an intraperitoneal insulin injection, and insulin signaling in skeletal muscle was analyzed by Western blot. Serum glucose and insulin were analyzed by ELISA for calculation of the homeostatic model assessment of insulin resistance (HOMA-IR). RESULTS: Mean ITT blood glucose over the course of 60 min was 32% higher in ZDF rats fed the whole egg-based diet than in ZDF rats fed the casein-based diet. Furthermore, whole egg consumption increased fasting blood glucose by 35% in ZDF rats. Insulin-stimulated phosphorylation of key proteins in the insulin signaling pathway did not differ in skeletal muscle of ZDF rats fed casein- and whole egg-based diets. In lean rats, no differences were observed in insulin tolerance, HOMA-IR and skeletal muscle insulin signaling, regardless of experimental dietary treatment. CONCLUSIONS: These data suggest that whole body insulin sensitivity may be impaired by whole egg consumption in T2D rats, although no changes were observed in skeletal muscle insulin signaling that could explain this finding.

19.
Front Physiol ; 10: 1521, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31969827

RESUMO

Autophagy is a major intracellular degradation process that is essential for the clearance of unnecessary proteins/organelles and the maintenance of cellular homeostasis. The inhibition of autophagy results in cellular consequences associated with many skeletal muscle pathologies, and therapies designed to elevate autophagic activity may provide protection from such pathologies. Acute exposure to low levels of heat has therapeutic effects; however, the impact of heat on skeletal muscle autophagy remains unclear. In the present study, C2C12 myotubes were maintained at 37°C thermoneutral (TN) or heated at 40°C heat treatment (HT) for 1 h. Myotubes were harvested immediately after heating, or returned to 37°C for recovery of 2 or 24 h. HT resulted in an elevation in pAMPK (T172), Beclin-1, and LC3 II, a marker for autophagosome formation, but no change in p62. In the context of autophagy inhibition with Bafilomycin A1, HT resulted in lower LC3 II compared to TN. The applied heat load induced the heat shock response, as evidenced by immediate upregulation of HSF1 and Hsp70. Hsp70 continued to increase during recovery, whereas pHsp27 was downregulated acutely in response to HT, but retuned to TN levels by 2 h of recovery. HT also reduced the phosphorylation of the MAP-kinases p38 and JNK. These findings suggest that an acute, short bout of mild heat may be beneficial to skeletal muscle by increasing AMPK activity, markers of autophagasome formation, and the heat shock response.

20.
Neurobiol Dis ; 121: 1-16, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30218757

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by accumulation of misfolded α-synuclein within the central nervous system (CNS). Visual problems in PD patients are common, although retinal pathology associated with PD is not well understood. The purpose of this study was to investigate retinal pathology in a transgenic mouse model (TgM83) expressing the human A53T α-synuclein mutation and assess the effect of α-synuclein "seeding" on the development of retinal pathology. Two-month-old TgM83 mice were intracerebrally inoculated with brain homogenate from old (12-18 months) TgM83 mice. Retinas were then analyzed at 5 months of age. We analyzed retinas from 5-month-old and 8-month-old uninoculated healthy TgM83 mice, and old (12-18 months) mice that were euthanized following the development of clinical signs. Retinas of B6C3H mice (genetic background of the TgM83 mouse) served as control. We used immunohistochemistry and western blot analysis to detect accumulation of α-synuclein, pTauThr231, inflammation, changes in macroautophagy, and cell death. Raman spectroscopy was used to test the potential to differentiate between retinal tissues of healthy mice and diseased mice. This work demonstrates retinal changes associated with the A53T mutation. Retinas of non-inoculated TgM83 mice had accumulation of α-synuclein, "pre-tangle" tau, activation of retinal glial cells, and photoreceptor cell loss by 8 months of age. The development of these changes is accelerated by inoculation with brain homogenate from clinically ill TgM83 mice. Compared to non-inoculated 5-month-old TgM83 mice, retinas of inoculated 5-month-old mice had increased accumulation of α-synuclein (pSer129) and pTauThr231 proteins, upregulated microglial activation, and dysregulated macroautophagy. Raman spectroscopic analysis was able to discriminate between healthy and diseased mice. This study describes retinal pathology resulting from the A53T mutation. We show that seeding with brain homogenates from old TgM83 mice accelerates retinal pathology. We demonstrate that Raman spectroscopy can be used to accurately identify a diseased retina based on its biochemical profile, and that α-synuclein accumulation may contribute to accumulation of pTauThr231 proteins, neuroinflammation, metabolic dysregulation, and photoreceptor cell death. Our work provides insight into retinal changes associated with Parkinson's disease, and may contribute to a better understanding of visual symptoms experienced by patients.


Assuntos
Autofagia , Encefalite/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Retina/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Animais , Modelos Animais de Doenças , Encefalite/complicações , Camundongos Transgênicos , Neuroglia/metabolismo , Doença de Parkinson/complicações , Fosforilação , Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...