Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 87(11): 11D303, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910444

RESUMO

A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C1 are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP's capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. The importance of synthetic diagnostics in validation is shown by applying the SDP to M3D-C1 output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.

2.
Rev Sci Instrum ; 81(10): 10D904, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033936

RESUMO

The first microwave imaging reflectometry (MIR) system for characterization of fluctuating plasma density has been implemented for the TEXTOR tokamak [H. Park et al., Rev. Sci. Instrum. 75, 3787 (2004)]; an improved MIR system will be installed on DIII-D and KSTAR. The central issue remains in preserving phase information by addressing antenna coupling between the reflection layer and the detector array in the presence of plasma turbulence. A synthetic diagnostic making use of coupled full-wave diffractive codes has been developed in geometries and applied to a variety of optical arrangements. The effectiveness of each scheme is quantitatively compared with respect to the fluctuation levels accessible in the simulation.

3.
Phys Rev Lett ; 93(14): 145003, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15524804

RESUMO

Nonlinear, kinetic simulations of stimulated Raman scattering (SRS) under laser-fusion conditions present a bursting behavior. Different explanations for this regime have been given in previous studies: saturation of SRS by increased nonlinear Landau damping [K. Estabrook et al., Phys. Fluids B 1, 1282 (1989)]], and detuning due to the nonlinear frequency shift of the plasma wave [H. X. Vu et al., Phys. Rev. Lett. 86, 4306 (2001)]]. Another mechanism, also assigning a key role to the trapped electrons is proposed here: the breakup of the plasma wave through the trapped-particle instability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...