Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1404347, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882570

RESUMO

Introduction: Plantations located outside the species distribution area represent natural experiments to assess tree tolerance to climate variability. Climate change amplifies warming-related drought stress but also leads to more climate extremes. Methods: We studied plantations of the European larch (Larix decidua), a conifer native to central and eastern Europe, in northern Spain. We used climate, drought and tree-ring data from four larch plantations including wet (Valgañón, site V; Santurde, site S), intermediate (Ribavellosa, site R) and dry (Santa Marina, site M) sites. We aimed to benchmark the larch tolerance to climate and drought stress by analysing the relationships between radial growth increment (hereafter growth), climate data (temperature, precipitation, radiation) and a drought index. Results: Basal area increment (BAI) was the lowest in the driest site M (5.2 cm2 yr-1; period 1988-2022), followed by site R (7.5 cm2 yr-1), with the youngest and oldest and trees being planted in M (35 years) and R (150 years) sites. BAI peaked in the wettest sites (V; 10.4 cm2 yr-1; S, 10.8 cm2 yr-1). We detected a sharp BAI reduction (30% of the regional mean) in 2001 when springto-summer conditions were very dry. In the wettest V and S sites, larch growth positively responded to current March and June-July radiation, but negatively to March precipitation. In the R site, high April precipitation enhanced growth. In the driest M site, warm conditions in the late prior winter and current spring improved growth, but warm-sunny conditions in July and dry-sunny conditions in August reduced it. Larch growth positively responded to spring-summer wet conditions considering short (1-6 months) and long (9-24 months) time scales in dry (site M) and wet-intermediate (sites S and R) sites, respectively. Discussion: Larch growth is vulnerable to drought stress in dry slow-growing plantations, but also to extreme spring wet-cloudy events followed by dry-hot conditions in wet fast-growing plantations.

2.
Sci Total Environ ; 918: 170539, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38296069

RESUMO

We lack understanding of how variable is radial growth of coexisting tree and shrub species, and how growth is constrained by drought depending on site aridity. Here, we compared the radial growth of two widespread and coexisting species, a winter deciduous shrub (Amelanchier ovalis Medik.) and an evergreen conifer tree (Pinus sylvestris L.). We sampled four sites in Northeastern Spain subjected to different aridity levels and used dendrochronological methods to quantify growth patterns and responses to climate variables. The growth of the two species varied between regions, being lower in the driest sites. The first-order autocorrelation (growth persistence) was higher in more mesic sites but without clear differences between species. Tree and shrub growth negatively responded to elevated summer temperatures and positively to spring-summer precipitation and wet conditions. However, negative growth responses of the shrub to drought were only observed in the two driest sites in contrast to widespread responses of the tree. Abrupt growth reductions were common in the drier sites, but resilience indices show that the two species rapidly recovered pre-drought growth levels. The lower growth synchrony of the shrub as compared to the tree can be due to the multistemmed architecture, fast growth and low stature of the shrub. Besides, the high dependency of the shrub growth on summer rainfall can explain why drought limitations were only apparent in the two driest sites. In any case, results point out to the dendrochronological potential of shrubs, which is particularly relevant giving its ability to inhabit woodlands and treeless regions under harsh climatic conditions. Nevertheless, further research is required to elucidate the capacity of shrub species to tolerate drought, as well as to understand how shrubs thrive in water- and cold-limited environments.


Assuntos
Pinus sylvestris , Pinus , Árvores , Secas , Florestas , Estações do Ano , Mudança Climática
3.
Sci Total Environ ; 883: 163680, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37105474

RESUMO

Humans have shaped open oak forests for centuries through pollarding and grazing. Nowadays, these cultural landscapes face the abandonment of their traditional uses and new threats, including rising temperatures and increasing drought stress, especially in southern Europe. We need precise data on the long-term radial growth changes of these oak woodlands to better characterize and preserve them. To fill this research gap, we compared the growth patterns and responses to climate variables and a drought index of three traditionally pollarded deciduous oaks (Quercus subpyrenaica, Quercus faginea, Quercus pyrenaica) and one previously pruned, evergreen oak (Quercus ilex) in central and northeastern Spain. In the three deciduous oaks, we reconstructed radial growth suppressions which were mainly attributed to past pollarding events. Recent post-pollarding growth improvement was transitory but long-term growth enhancement could be maintained by periodic pollarding. Formerly pollarded oaks were old reaching maximum ages of 313 years in the case of Q. faginea. Formerly pruned Q. ilex trees were also old reaching ages of at least 384 years. Peaks in major growth suppressions of Q. faginea sites corresponded to periods of intense timber demand following abrupt socioeconomic changes (land tenure and land use changes, local population growth, wars) such as the 1820s, 1840s, 1910s and 1940s. However, other growth suppressions corresponded to dry periods such as the 1870s and 1950s. Oak growth was constrained by warm-dry conditions in spring and by short- to long-term summer droughts (4-18 months). Pollarding abandonment and increased aridification threaten the survival of such old pollarded oak stands that preserve unique cultural, ecological and biological values.


Assuntos
Quercus , Humanos , Quercus/fisiologia , Secas , Clima , Florestas , Estações do Ano , Árvores/fisiologia
4.
Sci Total Environ ; 858(Pt 2): 159778, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309267

RESUMO

Local differentiation at distribution limits may influence species' adaptive capacity to environmental changes. However, drivers, such gene flow and local selection, are still poorly understood. We focus on the role played by range limits in mountain forests to test the hypothesis that relict tree populations are subjected to genetic differentiation and local adaptation. Two alpine treelines of mountain pine (Pinus uncinata Ram. ex DC) were investigated in the Spanish Pyrenees. Further, an isolated relict population forming the species' southernmost distribution limit in north-eastern Spain was also investigated. Using genotyping by sequencing, a genetic matrix conformed by single nucleotide polymorphisms (SNPs) was obtained. This matrix was used to perform genotype-environment and genotype-phenotype associations, as well as to model risk of non-adaptedness. Increasing climate seasonality appears as an essential element in the interpretation of SNPs subjected to selective pressures. Genetic differentiations were overall weak. The differences in leaf mass area and radial growth rate, as well as the identification of several SNPs subjected to selective pressures, exceeded neutral predictions of differentiation among populations. Despite genetic drift might prevail in the isolated population, the Fst values (0.060 and 0.066) showed a moderate genetic drift and Nm values (3.939 and 3.555) indicate the presence of gene flow between the relict population and both treelines. Nonetheless, the SNPs subjected to selection pressures provide evidences of possible selection in treeline ecotones. Persistence in range boundaries seems to involve several selective pressures in species' traits, which were significantly related to enhanced drought seasonality at the limit of P. uncinata distribution range. We conclude that gene flow is unlikely to constrain adaptation in the P. uncinata rear edge, although this species shows vulnerability to future climate change scenarios involving warmer and drier conditions.


Assuntos
Pinus , Espanha , Pinus/genética , Árvores , Florestas , Mudança Climática , Deriva Genética
5.
Int J Biometeorol ; 66(8): 1711-1723, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35672588

RESUMO

Alteration of forest by climate change and human activities modify the growth response of trees to temperature and moisture. Growth trends of young forests with even-aged stands recruited recently when the climate became warmer and drier are not well known. We analyze the radial growth response of young conifer trees (37-63 years old) to climatic parameters and drought stress employing Pearson correlations and the Vaganov-Shashkin Lite (VS-Lite) model. This study uses tree rings of six species of conifer trees (Pinus teocote, Pinus pseudostrobus, Pinus pinceana, Pinus montezumae, Pinus ayacahuite, and Taxodium mucronatum) collected from young forests with diverse growth conditions in northern and central Mexico. Seasonal ring growth and earlywood width (EW) were modeled as a function of temperature and soil moisture using the VS-Lite model. Wet and cool conditions in the previous winter and current spring enhance ring growth and EW production, mainly in sensitive species from dry sites (P. teocote, P. pseudostrobus, P. pinceana, and P. montezumae), whereas the growth of species from mesic sites (P. ayacahuite and T. mucronatum) shows little responsiveness to soil moisture. In P. ayacahuite and T. mucronatum, latewood growth is enhanced by warm summer conditions. The VS-Lite model shows that low soil moisture during April and May constrains growth in the four sensitive species, particularly in P. pinceana, the species dominant in the most xeric sites. Assessing seasonal ring growth and combining its response to climate with process-based growth models could complement xylogenesis data. Such framework should be widely applied, given the predicted warming and its impact on young forests.


Assuntos
Pinus , Traqueófitas , Adulto , Idoso , Mudança Climática , Secas , Florestas , Humanos , México , Pessoa de Meia-Idade , Estações do Ano , Solo
6.
Front Plant Sci ; 12: 672855, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512680

RESUMO

Forest dieback because of drought is a global phenomenon threatening particular tree populations. Particularly vulnerable stands are usually located in climatically stressing locations such as xeric sites subjected to seasonal drought. These tree populations show a pronounced loss of vitality, growth decline, and high mortality in response to extreme climate events such as heat waves and droughts. However, dieback events do not uniformly affect stands, with some trees showing higher symptoms of drought vulnerability than other neighboring conspecifics. In this study, we investigated if trees showing different vulnerabilities to dieback showed lower growth rates (Grs) and higher sensitivities to the climate in the past using dendroecology and the Vaganov-Shashkin (VS) process-based growth model. We studied two Pinus pinaster stands with contrasting Grs showing recent dieback in the Iberian System, north-eastern Spain. We compared coexisting declining (D) and non-declining (ND) trees with crown defoliation values above and below the 50% threshold, respectively. The mean growth rate was lower in D than in ND trees in the two stands. The two vigor classes showed a growth divergence prior to the dieback onset and different responsiveness to climate. The ND trees were more responsive to changes in spring water balance and soil moisture than D trees, indicating a loss of growth responsiveness to the climate in stressed trees. Such an interaction between water availability and vigor was reflected by the VS-model simulations, which provided evidence for the observation that growth was mainly limited by low soil moisture in both sites. Such an interaction between water availability and vigor was reflected by the VS-model simulations, which provided evidence for the observation that growth was mainly limited by low soil moisture in both sites. The presented comparisons indicated different stand vulnerabilities to drought contingent on-site conditions. Further research should investigate the role played by environmental conditions and individual features such as access to soil water or hydraulic traits and implement them in process-based growth models to better forecast dieback.

7.
Sci Total Environ ; 796: 148930, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34378542

RESUMO

Forests are being impacted by climate and land-use changes which have altered their productivity and growth. Understanding how tree growth responds to climate in natural and planted stands may provide valuable information to prepare management in sight of climate change. Plantations are expected to show higher sensitivity to climate and lower post-drought resilience than natural stands, due to their lower compositional and structural diversity. We reconstructed and compared the radial growth of six conifers with contrasting ecological and climatic niches (Abies pinsapo, Cedrus atlantica, Pinus sylvestris, Pinus nigra, Pinus pinea, Pinus pinaster) in natural and planted stands subjected to seasonal drought in 40 sites. We quantified the relationships between individual growth variability and climate variables (temperature, precipitation and the SPEI drought index), as well as post-drought resilience. Elevated precipitation during the previous autumn-winter and current spring to early summer enhanced growth in both natural and planted stands of all species. Temperature effects on growth were less consistent: only plantations of A. pinsapo, C. atlantica, P. nigra, P. pinea, P. sylvetris and a natural stand of P. nigra showed negative impacts of summer temperature on growth. Drought reduced growth of all species in both plantations and natural stands, with variations in the temporal scale of the response. Drought constrained growth more severely in natural stands than in plantations of C. atlantica, P. pinaster and P. nigra, whereas the inverse pattern was found for A. pinsapo. Resilience to drought varied between species: natural stands of A. pinsapo, C. atlantica and P. pinaster recovered faster than plantations, while P. pinea plantations recovered faster than natural stands. Overall, plantations did not consistently show a higher sensitivity to climate and a lower capacity to recover after drought. Therefore, plantations are potential tools for mitigating climate warming.


Assuntos
Pinus , Traqueófitas , Mudança Climática , Secas , Florestas , Temperatura , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...