Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861251

RESUMO

Industrial adoption of additive manufacturing (AM) processes demands improvement in the geometrical accuracy of manufactured parts. One key achievement would be to ensure that manufactured layer contours match the correspondent theoretical profiles, which would require integration of on-machine measurement devices capable of digitizing individual layers. Flatbed scanners should be considered as serious candidates, since they can achieve high scanning speeds at low prices. Nevertheless, image deformation phenomena reduce their suitability as two-dimensional verification devices. In this work, the possibilities of using flatbed scanners for AM contour verification are investigated. Image distortion errors are characterized and discussed and special attention is paid to the plication effect caused by contact imaging sensor (CIS) scanners. To compensate this phenomena, a new local distortion adjustment (LDA) method is proposed and its distortion correction capabilities are evaluated upon actual layer contours manufactured on a fused filament fabrication (FFF) machine. This proposed method is also compared to conventional global distortion adjustment (GDA). Results reveal quasi-systematic deformations of the images which could be minimized by means of distortion correction. Nevertheless, the irregular nature of such a distortion and the superposition of different errors penalize the use of GDA, to the point that it should not be used with CIS scanners. Conclusions indicate that LDA-based correction would enable the use of flatbed scanners in AM for on-machine verification tasks.

2.
Sensors (Basel) ; 14(3): 4495-512, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24662452

RESUMO

Conoscopic holography (CH) is a non-contact interferometric technique used for surface digitization which presents several advantages over other optical techniques such as laser triangulation. Among others, the ability for the reconstruction of high-sloped surfaces stands out, and so does its lower dependence on surface optical properties. Nevertheless, similarly to other optical systems, adjustment of CH sensors requires an adequate selection of configuration parameters for ensuring a high quality surface digitizing. This should be done on a surface located as close as possible to the stand-off distance by tuning frequency (F) and power (P) until the quality indicators Signal-to-Noise Ratio (SNR) and signal envelope (Total) meet proper values. However, not all the points of an actual surface are located at the stand-off distance, but they could be located throughout the whole working range (WR). Thus, the quality of a digitized surface may not be uniform. The present work analyses how the quality of a reconstructed surface is affected by its relative position within the WR under different combinations of the parameters F and P. Experiments have been conducted on AISI 316 wire EDM machined flat surfaces. The number of high-quality points digitized as well as distance measurements between different surfaces throughout the WR allowed for comparing the metrological behaviour of the CH sensor with respect to a touch probe (TP) on a CMM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...