Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38334528

RESUMO

Micro- and nanoparticles of plastic waste are considered emerging pollutants with significant environmental and health impacts at high concentrations or prolonged exposure time. Here we report the synthesis and characterization of a known metal-organic framework (MOF) using terephthalic acid (TPA) recovered from the hydrolysis of polyethylene terephthalate (PET) bottle waste. This approach adds value to the existing large amounts of bottle waste in the environment. Fully characterized zinc-TPA MOF (MOF-5) was used for the extraction and removal of engineered polyvinyl chloride (PVC) and polymethylmethacrylate (PMMA) nanoparticles from water with a high efficiency of 97% and 95%, respectively. Kinetic and isotherm models for the adsorption of polymer nanoparticles (PNPs) on the MOF surface were investigated to understand the mechanism. The Qmax for PVC and PMMA NPs were recorded as 56.65 mg/g and 33.32 mg/g, respectively. MOF-5 was characterized before and after adsorption of PNPs on the surface of MOF-5 using a range of techniques. After adsorption, the MOF-5 was successfully regenerated and reused for the adsorption and removal of PNPs, showing consistent results for five adsorption cycles with a removal rate of 83-85%. MOF-5 was characterized before and after adsorption of PNPs on the surface using a range of techniques. The MOF-5 with PNPs on the surface was successfully regenerated and reused for the adsorption and removal of polymer nanoparticles, showing consistent results for five extraction cycles. As a proof of concept, MOF-5 was also used to remove plastic particles from commercially available body scrub gel solutions. Such methods and materials are needed to mitigate the health hazards caused by emerging micro- and nanoplastic pollutants in the environment.

2.
Langmuir ; 39(21): 7249-7257, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37201193

RESUMO

Living organisms develop functional hard structures such as teeth, bones, and shells from calcium salts through mineralization for managing vital functions to sustain life. However, the exact mechanism or role of biomolecules such as proteins and peptides in the biomineralization process to form defect-free hierarchical structures in nature is poorly understood. In this study, we have extracted, purified, and characterized five major peptides (CBP1-CBP5) from the soluble organic materials (SOMs) of cuttlefish bone (CB) and used for the in vitro mineralization of calcium carbonate crystals. The SOMs induced nucleation of the calcite phase at low concentrations and the vaterite phase at high concentrations. The purified peptides nucleated calcite crystals and enhanced aggregation under laboratory conditions. Among five peptides, only CBP2 and CBP3 showed concentration-dependent nucleation, aggregation, and morphological changes of the calcite crystals within 12 h. Circular dichroism studies showed that the peptides CBP2 and CBP3 are in alpha helix and ß-sheet conformation, respectively, in solution. CBP1 and CBP4 and CBP5 are in random coil and ß-sheet conformation, respectively. In addition, the peptides showed different sizes in solution in the absence (∼27 nm, low aggregation) and presence (∼118 nm, high aggregation) of calcium ions. Aragonite crystals with needle-type morphologies were nucleated in the presence of Mg2+ ions in solution. Overall, exploring the activities of such intramineral peptides from CB help to unravel the mechanism of calcium salt deposition in nature.


Assuntos
Biomineralização , Cálcio , Peptídeos/química , Carbonato de Cálcio/química , Íons
3.
Sci Total Environ ; 871: 161955, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737013

RESUMO

Plastic products have become an integral part of our life. A widespread usage, high stability, uncontrolled disposal and slow degradation of plastics in the environment led to the generation and accumulation of nanoparticles of polymers (NPs) in the marine environment. However, little is known about the aggregation, consumption and distribution of NPs from common polymers such as polyvinyl chloride (NP-PVC) and polymethyl methacrylate (NP-PMMA) inside marine animal physiologies. In the current study, two types of polymers (PVC and PMMA) × four exposure concentrations (1, 5, 15 and 25 mg/L) × four times (4, 8, 12 and 24 h) exposure studies were conducted to understand the consumption and distribution of luminescent NP-PVC (98.6 ± 17.6 nm) and NP-PMMA (111.9 ± 37.1 nm) in R. philippinarum. Under laboratory conditions, NP-PVC showed a higher aggregation rate than NP-PMMA in seawater within a period of 24 h. Aggregations of NPs increased with an increase in initial NP concentrations, leading to significant settling of nanoparticles within 24 h exposure. Such aggregation and settling of particles enhanced the consumption of NPs by benthic filter-feeding R. philippinarum at all exposure concentrations during 4 h exposure. More interestingly, NP-PVC and NP-PMMA were observed in large amounts in both liver and gills (22.6 % - 29.1 %) of the clams. Furthermore, NP-PVC was detected in most organs of R. philippinarum as compared to NP-PMMA. This study demonstrates that different polymers distribute and accumulate differently in the same biological model under laboratory exposure conditions based on their chemical nature.


Assuntos
Bivalves , Nanopartículas , Poluentes Químicos da Água , Animais , Polimetil Metacrilato/metabolismo , Cloreto de Polivinila , Polímeros/metabolismo , Plásticos/metabolismo , Bivalves/metabolismo , Poluentes Químicos da Água/análise
4.
Environ Pollut ; 315: 120407, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228860

RESUMO

Many organisms are consuming food contaminated with micro- and nanoparticles of plastics, some of which absorb persistent organic pollutants (POPs) from the environment and acting as carrier vectors for increasing the bioavailability in living organisms. We recently reported that polymethylmethacrylate (PMMA) nanoparticles at low concentrations are not toxic to animal models tested. In this study, the toxicity of diphenylamine (DPA) incorporated PMMA nanoparticles are assessed using barnacle larvae as a model organism. The absorption capacity of DPA from water for commercially available virgin PMMA microparticles is relatively low (0.14 wt%) during a 48 h period, which did not induce exposure toxicity to barnacle nauplii. Thus, PMMA nanoparticles encapsulated with high concentrations of DPA (DPA-enc-PMMA) were prepared through a reported precipitation method to achieve 40% loading of DPA inside the particles. Toxicity of DPA-enc-PMMA nanoparticles were tested using freshly spawned acorn barnacle nauplii. The observed mortality of nauplii from DPA-enc-PMMA exposure was compared to the values obtained from pure DPA exposure in water. The mortality among the exposed acorn barnacle nauplii did not exceed 50% even at a high concentration of DPA inside the PMMA nanoparticles. The results suggest that the slow release of pollutants from polymer nanoparticles may not induce significant toxicity to the organism living in a dynamic environment. The impact of long-term exposure of DPA absorbed plastic nanoparticles need to be investigated in the future.


Assuntos
Poluentes Ambientais , Nanopartículas , Thoracica , Poluentes Químicos da Água , Animais , Microplásticos , Polimetil Metacrilato/toxicidade , Plásticos/toxicidade , Nanopartículas/toxicidade , Água , Poluentes Químicos da Água/toxicidade
5.
Nano Lett ; 22(18): 7432-7440, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36069429

RESUMO

It has been long known that low molecular weight resists can achieve a very high resolution, theoretically close to the probe diameter of the electron beam lithography (EBL) system. Despite technological improvements in EBL systems, the advances in resists have lagged behind. Here we demonstrate that a low-molecular-mass single-source precursor resist (based on cadmium(II) ethylxanthate complexed with pyridine) is capable of a achieving resolution (4 nm) that closely matches the measured probe diameter (∼3.8 nm). Energetic electrons enable the top-down radiolysis of the resist, while they provide the energy to construct the functional material from the bottom-up─unit cell by unit cell. Since this occurs only within the volume of resist exposed to primary electrons, the minimum size of the patterned features is close to the beam diameter. We speculate that angstrom-scale patterning of functional materials is possible with single-source precursor resists using an aberration-corrected electron beam writer with a spot size of ∼1 Å.

6.
Chembiochem ; 23(9): e202100654, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35188704

RESUMO

Ferroptosis is a cell death event caused by increased lipid peroxidation leading to iron-dependent oxidative stress and is associated with a wide variety of diseases. In recent years, ferroptosis inhibition has emerged as a novel strategy to target different pathologies. Here, we report the synthesis of two purine derivatives, 1 and 2, for iron chelation strategy and evaluate their potency to inhibit erastin-induced ferroptosis. Both compounds showed efficient iron chelation in solution as well as in cellular environment. The crystal structure of the purine derivatives with iron demonstrated a 2 : 1 (ligand to metal center) stoichiometry for iron and purine derivative complexation. The synthesized compounds also decrease the reactive oxygen species concentration in cell cultures. Compound 2 showed better potency towards the prevention of ferroptotic cell death as compared to commercially available iron chelator in the erastin-induced ferroptosis cell culture model. Such purine analogues are potential functional scaffolds for the development of target molecules for ferroptosis inhibition.


Assuntos
Ferro , Purinas , Morte Celular , Quelantes de Ferro , Piperazinas , Purinas/farmacologia
7.
Sci Total Environ ; 806(Pt 4): 150965, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34662627

RESUMO

Pollution from plastic waste is increasingly prevalent in the environment and beginning to generate significant adverse impact on the health of living organisms. In this study, we investigate the toxicity of polymer nanoparticles exposed to Acorn Barnacle (Amphibalanus amphitrite) nauplii, as an animal model. Highly stable aqueous dispersion of luminescent nanoparticles from three common polymers: polymethylmethacrylate (PMMA), polystyrene (PS), and polyvinylchloride (PVC), were prepared via nanoprecipitation and fully characterised. Exposure studies of these polymer particles to freshly spawned barnacle nauplii were performed within a concentration range from 1 to 25 mg/L under laboratory-controlled conditions. The exposure to PMMA and PS nanoparticles did not show detrimental toxicity and did not cause sufficient mortality to compute a LC50 value. However, PVC nanoparticles were significantly toxic with a mortality rate of up to 99% at 25 mg/L, and the calculated LC50 value for PVC nanoparticles was 7.66 ± 0.03 mg/L, 95% CI. Interestingly, PVC nanoparticle aggregates were observed to adhere to the naupliar carapace and appendages at higher concentrations and could not be easily removed by washings. To explore the possibility of chemical toxicity of polymer nanoparticles, analysis of the polymer powders which was used to prepare the nanoparticles was conducted. The presence of low molecular weight oligomers such as dimers, trimers and tetramers were observed in all polymer samples. The chemical nature and concentration of such compounds are likely responsible for the observed toxicity to the barnacle nauplii. Overall, our study shows that care should be exercised in generalising the findings of exposure studies performed using one type of plastic particles, as the use of different plastic particles may elicit different responses inside a living organism.


Assuntos
Nanopartículas , Thoracica , Animais , Larva , Nanopartículas/toxicidade , Plásticos , Polímeros/toxicidade
8.
ACS Omega ; 6(31): 20522-20529, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34395998

RESUMO

Molecular and macromolecular templates are known to affect the shape, size, and polymorph selectivity on the biomineralization of calcium carbonate (CaCO3). Micro- and nanoparticles of common polymers present in the environment are beginning to show toxicity in living organisms. In this study, the role of plastic nanoparticles in the biomineralization of CaCO3 is explored to understand the ecological impact of plastic pollution. As a model study, luminescent poly(methyl methacrylate) nanoparticles (PMMA-NPs) were prepared using the nanoprecipitation method, fully characterized, and used for the mineralization experiments to understand their influence on nucleation, morphology, and polymorph selectivity of CaCO3 crystals. The PMMA-NPs induced calcite crystal nucleation with spherical morphologies at high concentrations. Microplastic particles collected from a commercial face scrub were also used for CaCO3 nucleation to observe the nucleation of calcite crystals on the particle surface. Microscopic, spectroscopic, and X-ray diffraction data were used to characterize and identify the nucleated crystals. The data presented in this paper add more information on the impact of microplastics on the marine environment.

9.
Chem Res Toxicol ; 34(6): 1468-1480, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33861932

RESUMO

High concentrations of micro- and nanoparticles of common plastic materials present in the environment are causing an adverse health impact on living organisms. As a model study, here we report the synthesis and characterization of luminescent polyvinyl chloride (PVC) and poly(methyl methacrylate) (PMMA) nanoparticles and investigate the interaction with normal human lung fibroblast cells (IMR 90) to understand the uptake, translocation, and toxicity of PVC and PMMA nanoparticles. The synthesized particles are in the size range of 120-140 nm with a negative surface potential. The colocalization and uptake efficiency of the nanoparticles were analyzed, and the cytotoxicity assay shows significant reduction in cell viability. Cellular internalization was investigated using colocalization and dynasore inhibitor tests, which showed that the PVC and PMMA nanoparticles enter into the cell via endocytosis. The polymer nanoparticles induced a reduction in viability, decrease in adenosine triphosphate, and increase in reactive oxygen species and lactate dehydrogenase concentrations. In addition, the polymer nanoparticles caused cell cycle arrest at sub-G1, G0/G1, and G2/M phases, followed by apoptotic cell death. Our results reported here are important to the emerging data on understanding the impact of common polymer particles on human health.


Assuntos
Nanopartículas/química , Polimetil Metacrilato/farmacologia , Cloreto de Polivinila/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Tamanho da Partícula
10.
J Hazard Mater ; 413: 125301, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33588331

RESUMO

Both micro- and nanoparticles of common plastic materials are considered as emerging pollutants with significant impact on the environment owing to large concentration, high stability and widespread distribution. To mitigate the risk of such pollutants, new methodologies for the detection and removal of plastic nanoparticles from the environment are needed. Here, a simple and effective method of using surface modified cellulose fibers for the removal of polymer nanoparticles from spiked water samples is discussed in detail. Almost quantitative (> 98%) removal of polymer nanoparticles and high adsorption efficiencies were obtained within 30 minutes. The mechanism of adsorption of polymer nanoparticles on the surface of PEI@CE fibers was monitored by Fourier transform infrared (FTIR) spectroscopy, kinetic studies, thermal analyses, changes in zeta potentials and scanning electron microscopy (SEM). The renewable adsorbent PEI@CE is a promising material for a wide range of applications owing to biodegradability, easy accessibility, and high extraction efficiencies.

11.
Sci Rep ; 11(1): 2089, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483569

RESUMO

Microplastic and nanoplastic particles are prevalent in the environment and are beginning to enter the living system through multiple channels. Currently, little is known about the impact of plastic nanoparticles in living organisms. In order to investigate the health impact of micro- and nanoparticles of common polymers in a systematic way, luminescent plastic nanoparticles from two common polymers, polyvinyl chloride (PVC) and poly (methyl methacrylate) (PMMA) with relatively narrow size distribution are prepared using a nanoprecipitation method. As a model system, BHK-21 cells were exposed to polymer nanoparticles to understand the mode of uptake, internalization and biochemical changes inside the cells. The cellular effects of the nanoparticles were evaluated by monitoring the changes in cell viability, cell morphology, concentrations of reactive oxygen species (ROS), adenine triphosphate (ATP) and lactate dehydrogenase at different concentrations of the nanoparticles and time of exposure. PVC and PMMA nanoparticles induced a reduction in the cell viability along with a reduction of ATP and increase of ROS concentrations in a dose- and time-dependent manner. The plastic nanoparticles are internalized into the cell via endocytosis, as confirmed by Dynasore inhibition assay and colocalization with latex beads. Our findings suggest that plastic nanoparticle internalization could perturb cellular physiology and affect cell survival under laboratory conditions.


Assuntos
Nanopartículas/química , Polimetil Metacrilato/química , Cloreto de Polivinila/química , Trifosfato de Adenosina/metabolismo , Animais , Ciclo Celular , Linhagem Celular , Cricetinae , Endocitose , Rim/citologia , Rim/enzimologia , Rim/metabolismo , L-Lactato Desidrogenase/metabolismo , Microscopia Eletrônica de Varredura , Espécies Reativas de Oxigênio/metabolismo
12.
Chem Commun (Camb) ; 56(85): 13044-13047, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33001077

RESUMO

Phenol-metal coordination polymers are used in applications such as catalysis, sensing and separation science. In addition, combining eco-friendly conditions with economical and handling advantages of the polymeric catalyst is of interest to the community. Here, we report a simple one pot synthesis of a tetracatechol based ligand and its coordination polymer with copper ions. The Cu polymer showed electrochemical potential with a band gap of 1.01 eV. The BET surface area of the metallopolymer was 91.19 m2 g-1 with 0.14 cm3 g-1 pore volume. The polymer catalyst was used in a one pot three component click reaction and in the borylation of unsaturated carbonyl compounds with a maximum 99% conversion in water and good turnover efficiency even after 4 repetitive catalysis cycles. The polymer catalyst offers several advantages such as high activity, easy handling, scalability, recyclability and cost effectiveness.

13.
Chem Commun (Camb) ; 56(76): 11303-11306, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32840264

RESUMO

Nontoxic adhesive hydrogels are of great importance in tissue engineering. Herein, we report a simple synthesis of a few biocompatible hydrogels from adenine and dopamine immobilized polyacrylic acid (PAA) and alginic acid (Alg) polymers. The adenine-dopamine adduct incorporated hydrogels showed enhanced adhesiveness, transparency and biocompatibility, and induced cell proliferation in 2D and 3D-cell culture models within 24 h. Moreover, blending the modified PAA and Alg polymers (P2P4) further increased the stability and bioactivity of the hydrogel. Such biogels can be developed as smart materials for biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Engenharia Tecidual , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Adenina/química , Adenina/farmacologia , Ácido Algínico/química , Ácido Algínico/farmacologia , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dopamina/química , Dopamina/farmacologia , Humanos , Hidrogéis/síntese química , Hidrogéis/farmacologia , Teste de Materiais , Microscopia Confocal , Estrutura Molecular , Células Tumorais Cultivadas
14.
J Org Chem ; 85(16): 10593-10602, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32700536

RESUMO

Perylene bisimide (PBI) and azo-compounds are fascinating molecules with interesting optical properties. Here, we combine the two chromophores to prepare nonconjugated and conjugated stable azo-PBI dyes. The detailed structural characterization, comparison of properties, and solid-state self-assembly of the compounds are discussed. The incorporation of azo groups at the bay side of PBI led to significant changes in optical properties as compared to the model PBIs (M1 and M2). All new azo-PBIs showed photoinduced isomerization, which caused disaggregation and enhancement in fluorescence. The amine-incorporated azo-PBIs (3 and 6) reduced chloroauric acid into gold nanoparticles. The current study offers a simple synthetic strategy and comparison of the properties of conjugated and nonconjugated azo-PBIs, which could be useful in photoelectronic devices.

15.
Chempluschem ; 85(7): 1430-1437, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32633091

RESUMO

Naphthalene diimide (NDI) compounds are widely used as electron acceptors in various applications. Herein, we combine NDI with quaternary ammonium groups for the synthesis of a highly electron-deficient linear compound 2 and macrocycle 3. The complexation studies of the water-soluble macrocycle 3 with aromatic di- and tetra- carboxylate anions in water were done using absorption, emission, 1 H NMR and NOESY spectroscopic titrations. The NDI incorporated macrocycle 3 showed high binding affinities towards linear aromatic tetracarboxylate anions owing to the size and charge complementarity of the host-guest complex. Macrocycle 3 binds tetracarboxylate anion much better than dicarboxylate anions. Furthermore, the macrocycle 3 is solvated differently in acetonitrile and in water or dimethyl sulfoxide, which induces changes in conformation and photophysical properties. Such electron-deficient optically active macrocycles are useful for developing useful sensor materials.

16.
ACS Appl Mater Interfaces ; 12(16): 19044-19053, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32227990

RESUMO

Phenols and polyphenols have been used as a scaffold for generating multidimensional molecular architectures via complexation with metal ions. Here, we report the synthesis and characterization of metallopolymer films from three catechol derivatives having different alkyl/aryl substituents via complexation with iron and copper ions at the organic-water interface. Such interfacial polymerization is instantaneous, one step to generate functional materials, and gives good control over the organization of repeating units along the film. The films were transferred to different substrates such as filter paper, cotton, or polyester fabrics. The films are superhydrophobic with a contact angle >160° which can be tuned by regulating the orientation of nonpolar groups at the interface during polymerization. In addition, the fabricated cloth membrane showed excellent oil/water separation efficiency of more than 99% even after 50 cycles. The polymers also showed good dye extraction capacity from aqueous solutions with fast kinetics data. Such metallopolymer networks can serve as a versatile material for applications in catalysis, protective coatings, drug delivery, water filtration membranes, and liquid separations.

17.
Artigo em Inglês | MEDLINE | ID: mdl-32111046

RESUMO

Fragmented or otherwise miniaturized plastic materials in the form of micro- or nanoplastics have been of nagging environmental concern. Perturbation of organismal physiology and behavior by micro- and nanoplastics have been widely documented for marine invertebrates. Some of these effects are also manifested by larger marine vertebrates such as fishes. More recently, possible effects of micro- and nanoplastics on mammalian gut microbiota as well as host cellular and metabolic toxicity have been reported in mouse models. Human exposure to micro- and nanoplastics occurs largely through ingestion, as these are found in food or derived from food packaging, but also in a less well-defined manner though inhalation. The pathophysiological consequences of acute and chronic micro- and nanoplastics exposure in the mammalian system, particularly humans, are yet unclear. In this review, we focus on the recent findings related to the potential toxicity and detrimental effects of micro- and nanoplastics as demonstrated in mouse models as well as human cell lines. The prevailing data suggest that micro- and nanoplastics accumulation in mammalian and human tissues would likely have negative, yet unclear long-term consequences. There is a need for cellular and systemic toxicity due to micro- and nanoplastics to be better illuminated, and the underlying mechanisms defined by further work.


Assuntos
Microplásticos , Nanopartículas , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Linhagem Celular , Humanos , Mamíferos , Camundongos , Microplásticos/toxicidade , Modelos Animais , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade
18.
ACS Appl Mater Interfaces ; 12(14): 16772-16781, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32175725

RESUMO

Molybdenum disulfide (MoS2) is traditionally grown at a high temperature and subsequently patterned to study its electronic properties or make devices. This method imposes severe limitations on the shape and size of MoS2 crystals that can be patterned precisely at required positions. Here, we describe a method of direct nanoscale patterning of MoS2 at room temperature by exposing a molybdenum thiocubane single-source precursor to a beam of electrons. Molybdenum thiocubanes with various alkylxanthate moieties [Mo4S4(ROCS2)6, where R = alkyl] were prepared using a "self-assembly" approach. Micro-Raman and micro-FTIR spectroscopic studies suggest that exposure to a relatively smaller dose of electrons results in the breakdown of xanthate moieties, leading to the formation of MoS2. High-resolution transmission electron micrographs suggest that the growth of MoS2 most likely happens along (100) planes. An electron-beam-induced chemical transformation of a molybdenum thiocubane resist was exploited to fabricate sub-10 nm MoS2 lines and dense dots as small as 13 nm with a pitch of 33 nm. Since this technique does not require the liftoff and etching steps, patterning of MoS2 with interesting shapes, sizes, and thicknesses potentially leading to tunable band gap is possible.

19.
J Org Chem ; 85(5): 3092-3100, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31951125

RESUMO

Perylene bisimide-based materials are good candidates for photosensitive applications. Herein, we report synthesis, characterization, and complexation studies of perylene bisimide macrocycles obtained through bayside coupling. The isomeric macrocycles incorporated with interesting optical properties and tubular-shaped cavities are able to recognize geometric isomers of azobenzenes and aromatic amines. Such selective recognition is useful toward developing potential sensors for interesting isomeric pairs in the future.

20.
ACS Appl Mater Interfaces ; 11(46): 43708-43718, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31642311

RESUMO

Gas-induced growth of organic-inorganic hybrid perovskites, especially methylammonium lead iodide (MAPbI3), has shown interesting properties and applications in the area of optoelectronics. In this report, we introduce a method of gas-induced band gap engineering of thin films of MAPbI3 due to systematic dimensional confinement-deconfinement along the crystallographic c axis of growing MAPbI3. Interestingly, such a restricted growth phenomenon was observed when the hexylammonium lead iodide (two-dimensional hybrid perovskite) film was exposed to methylamine gas instead of the conventional PbI2 film-methylamine gas precursor pair. Hexylamine, formed due to the cation exchange reaction, interacts selectively with the Pb centers of growing MAPbI3 crystals, and this induces an enormous restriction in the growth of MAPbI3 along the crystallographic c direction, leading to a unique sheet-type MAPbI3 film having a much higher band gap (2.18 eV) compared to conventional bulk MAPbI3. However, careful control of exposure timing gradually evaporates the hexylamine, leading to systematic dimensional deconfinement, enabling modulation of the band gap from 2.18 to 1.69 eV. An interplay of adsorption and desorption of hexylamine is also utilized for generating patterns of two different fluorescent hybrid perovskite materials in a single pixel. This new mechanistic investigation highlighting gas-induced interplay of dimensional confinement-deconfinement associated with band gap tuning provides smooth thin films, which can be used to develop optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...