Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 31(26): 265402, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-30909178

RESUMO

The phonon dispersion of FeSi was measured by inelastic x-ray scattering. The study of its temperature evolution in the range of 100 K-300 K showed that the phonon modes soften to a different extent. The phonons exhibiting specifically strong softening were revealed to belong to the weakly dispersive optical branch. At the same time, the calculations of the lattice dynamics of FeSi suggest that this branch corresponds mainly to the atomic displacements that change the Fe-Fe nearest neighbor distance. It points to the role of the Fe-Fe interaction in the phonon softening.

2.
J Phys Condens Matter ; 29(8): 085401, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28060772

RESUMO

Single crystal synchrotron diffraction for pressures up to 50 GPa has revealed an essential difference in structural properties and compressibility of MnGe compared with Mn1-x Co x Ge and Mn1-x Fe x Ge solid solutions. A negative thermal expansion has been observed for MnGe at low-temperatures and high-pressures. The single crystal refinement has shown a discontinuous change of the atomic coordinates and Mn-Ge interatomic distances of MnGe in contrast to Mn0.1Co0.9Ge. These peculiarities of MnGe are likely to be associated with high-spin-low-spin transition. The relation between anisotropy of the coordination of Mn-atom and its magnetic moment is discussed.

3.
J Phys Condens Matter ; 28(37): 375401, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27421076

RESUMO

Temperature dependent powder and single-crystal synchrotron diffraction, specific heat, magnetic susceptibility and small-angle neutron scattering experiments have revealed an anomalous response of MnGe. The anomaly becomes smeared out with decreasing Mn content in Mn1-x Co x Ge and Mn1-x Fe x Ge solid solutions. Mn spin state instability is discussed as a possible candidate for the observed effects.

4.
J Appl Crystallogr ; 46(Pt 4): 874-881, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24046491

RESUMO

In this work epitaxial growth of cobalt on CaF2(111), (110) and (001) surfaces has been extensively studied. It has been shown by atomic force microscopy that at selected growth conditions stand-alone faceted Co nanoparticles are formed on a fluorite surface. Grazing-incidence X-ray diffraction (GIXD) and reflection high-energy electron diffraction (RHEED) studies have revealed that the particles crystallize in the face-centered cubic lattice structure otherwise non-achievable in bulk cobalt under normal conditions. The particles were found to inherit lattice orientation from the underlying CaF2 layer. Three-dimensional reciprocal space mapping carried out using X-ray and electron diffraction has revealed that there exist long bright 〈111〉 streaks passing through the cobalt Bragg reflections. These streaks are attributed to stacking faults formed in the crystal lattice of larger islands upon coalescence of independently nucleated smaller islands. Distinguished from the stacking fault streaks, crystal truncation rods perpendicular to the {111} and {001} particle facets have been observed. Finally, grazing-incidence small-angle X-ray scattering (GISAXS) has been applied to decouple the shape-related scattering from that induced by the crystal lattice defects. Particle faceting has been verified by modeling the GISAXS patterns. The work demonstrates the importance of three-dimensional reciprocal space mapping in the study of epitaxial nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...