Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 8(3): 1260-79, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26674446

RESUMO

Research on nanomaterials and nanostructured materials is burgeoning because their numerous and versatile applications contribute to solve societal needs in the domain of medicine, energy, environment and STICs. Optimizing their properties requires in-depth analysis of their structural, morphological and chemical features at the nanoscale. In a transmission electron microscope (TEM), combining tomography with electron energy loss spectroscopy and high-magnification imaging in high-angle annular dark-field mode provides access to all features of the same object. Today, TEM experiments in three dimensions are paramount to solve tough structural problems associated with nanoscale matter. This approach allowed a thorough morphological description of silica fibers. Moreover, quantitative analysis of the mesoporous network of binary metal oxide prepared by template-assisted spray-drying was performed, and the homogeneity of amino functionalized metal-organic frameworks was assessed. Besides, the morphology and internal structure of metal phosphide nanoparticles was deciphered, providing a milestone for understanding phase segregation at the nanoscale. By extrapolating to larger classes of materials, from soft matter to hard metals and/or ceramics, this approach allows probing small volumes and uncovering materials characteristics and properties at two or three dimensions. Altogether, this feature article aims at providing (nano)materials scientists with a representative set of examples that illustrates the capabilities of modern TEM and tomography, which can be transposed to their own research.

2.
J Mater Sci Mater Med ; 24(8): 1875-84, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23666665

RESUMO

Injectable materials for mini-invasive surgery of cartilage are synthesized and thoroughly studied. The concept of these hybrid materials is based on providing high enough mechanical performances along with a good medium for chondrocytes proliferation. The unusual nanocomposite hydrogels presented herein are based on siloxane derived hydroxypropylmethylcellulose (Si-HPMC) interlinked with mesoporous silica nanofibers. The mandatory homogeneity of the nanocomposites is checked by fluorescent methods, which show that the silica nanofibres dispersion is realized down to nanometric scale, suggesting an efficient immobilization of the silica nanofibres onto the Si-HPMC scaffold. Such dispersion and immobilization are reached thanks to the chemical affinity between the hydrophilic silica nanofibers and the pendant silanolate groups of the Si-HPMC chains. Tuning the amount of nanocharges allows tuning the resulting mechanical features of these injectable biocompatible hybrid hydrogels. hASC stem cells and SW1353 chondrocytic cells viability is checked within the nanocomposite hydrogels up to 3 wt% of silica nanofibers.


Assuntos
Cartilagem , Hidrogéis/química , Nanofibras/química , Polissacarídeos/química , Dióxido de Silício/química , Siloxanas/química , Engenharia Tecidual/métodos , Cartilagem/citologia , Cartilagem/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Reagentes de Ligações Cruzadas/síntese química , Reagentes de Ligações Cruzadas/química , Humanos , Hidrogéis/farmacologia , Teste de Materiais , Nanocompostos/química , Porosidade , Alicerces Teciduais/química
3.
ACS Nano ; 6(12): 10614-21, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23157685

RESUMO

Tailoring physical and chemical properties at the nanoscale by assembling nanoparticles currently paves the way for new functional materials. Obtaining the desired macroscopic properties is usually determined by a perfect control of the contact between nanoparticles. Therefore, the physics and chemistry of nanocontacts are one of the central issues for the design of the nanocomposites. Since the birth of atomic force microscopy, crucial advances have been achieved in the quantitative evaluation of van der Waals and Casimir forces in nanostructures and of adhesion between the nanoparticles. We present here an investigation, by a noncontact method, of the elasticity of an assembly of nanoparticles interacting via either van der Waals-bonded or covalent-bonded coating layers. We demonstrate indeed that the ultrafast opto-acoustic technique, based on the generation and detection of hypersound by femtosecond laser pulses, is very sensitive to probe the properties of the nanocontacts. In particular, we observe and evaluate how much the subnanometric molecules present at nanocontacts influence the coherent acoustic phonon propagation along the network of the interconnected silica nanoparticles. Finally, we show that this ultrafast opto-acoustic technique provides quantitative estimates of the rigidity/stiffness of the nanocontacts.

4.
Chem Asian J ; 6(5): 1217-24, 2011 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-21360682

RESUMO

Organic-inorganic hybrid membranes of poly(vinylidene fluoride)-cohexafluoropropylene (PVdF-HFP) and mesostructured silica containing sulfonic acid groups were synthesized by using the sol-gel process. These hybrid membranes were prepared by in situ co-condensation of tetraethoxysilane and an organically modified silane (ormosil) by a self-assembly route using organic surfactants as templates for tuning the architecture of the hybrid organosilica component. In this paper, we describe the elaboration and characterization of hybrid membranes all the way from the precursor solution to the evaluation of the fuel cell performances. These hybrid materials were extensively characterized by using NMR and IR spectroscopy, electron microscopy, or impedance spectroscopy so as to determinate their physicochemical and electrochemical properties. Even though the ion-exchange capacity (IEC) was quite weak, the first fuel cell tests performed with these hybrid membranes show promising results relative to optimized Nafion 112 thanks to great water management of the silica inside the hydrophobic polymer.

5.
Nat Mater ; 5(2): 107-11, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16444263

RESUMO

The elaborate performances characterizing natural materials result from functional hierarchical constructions at scales ranging from nanometres to millimetres, each construction allowing the material to fit the physical or chemical demands occurring at these different levels. Hierarchically structured materials start to demonstrate a high input in numerous promising applied domains such as sensors, catalysis, optics, fuel cells, smart biologic and cosmetic vectors. In particular, hierarchical hybrid materials permit the accommodation of a maximum of elementary functions in a small volume, thereby optimizing complementary possibilities and properties between inorganic and organic components. The reported strategies combine sol-gel chemistry, self-assembly routes using templates that tune the material's architecture and texture with the use of larger inorganic, organic or biological templates such as latex, organogelator-derived fibres, nanolithographic techniques or controlled phase separation. We propose an approach to forming transparent hierarchical hybrid functionalized membranes using in situ generation of mesostructured hybrid phases inside a non-porogenic hydrophobic polymeric host matrix. We demonstrate that the control of the multiple affinities existing between organic and inorganic components allows us to design the length-scale partitioning of hybrid nanomaterials with tuned functionalities and desirable size organization from ångström to centimetre. After functionalization of the mesoporous hybrid silica component, the resulting membranes have good ionic conductivity offering interesting perspectives for the design of solid electrolytes, fuel cells and other ion-transport microdevices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...