Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 30(12): 3303-9, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24568190

RESUMO

The initial stage of calcium carbonate nucleation and growth, found usually in "natural" precipitation conditions, is still not well understood. The calcium carbonate formation for moderate supersaturation level could be achieved by an original method called the fast controlled precipitation (FCP) method. FCP was coupled with SAXS (small-angle X-ray scattering) measurements to get insight into the nucleation and growth mechanisms of calcium carbonate particles in Ca(HCO3)2 aqueous solutions. Two size distributions of particles were observed. The particle size evolutions of these two distributions were obtained by analyzing the SAXS data. A nice agreement was obtained between the total volume fractions of CaCO3 obtained by SAXS analysis and by pH-resistivity curve modeling (from FCP tests).


Assuntos
Carbonato de Cálcio/síntese química , Precipitação Química , Carbonato de Cálcio/química , Concentração de Íons de Hidrogênio , Espalhamento a Baixo Ângulo , Difração de Raios X
2.
J Chem Phys ; 122(11): 114513, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15836235

RESUMO

The effects of a pulsed low frequency electromagnetic field were investigated on photoluminescence of well characterized water and prepared under controlled conditions (container, atmospheric, electromagnetic, and acoustic environments). When reference water samples were excited at 260 nm, two wide emission bands centered at 345 nm (3.6 eV) and 425 nm (2.9 eV) were observed. By contrast under 310 nm excitation, only one band appeared at 425 nm. Interestingly, electromagnetic treatment (EMT) induced, at both excitation wavelengths, a decrease (around 70%) in the 425 nm band relative photoluminescence intensity. However, no difference between reference and treated sample was observed in the 345 nm band. Other experiments, performed on outgassed samples (reference and treated), show that the emission bands (position, shape, intensity) under excitation at 260 nm and 310 nm were similar and close to the corresponding bands of the treated nonoutgassed samples. Similar effects were observed on photoluminescence excitation of water samples. Two excitation bands monitored at 425 nm were observed at 272 nm and 330 nm. After EMT and/or outgassing, a decrease (>60%) was observed in the intensity of these two bands. Altogether, these results indicate that electromagnetic treatment and/or outgassing decrease in a similar fashion the photoluminescence intensity in water samples. They also suggest that this effect is most likely indirectly attributed to the presence of gas bubbles in water. The possible role of hydrated ionic shell around the bubbles in the observed extraluminescence is discussed.

3.
Langmuir ; 21(6): 2293-9, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15752018

RESUMO

Well-characterized purified water was exposed for 6 h to pulsed low-frequency weak electromagnetic fields. After various time periods, nondegassed and degassed water samples were analyzed by static light scattering. Just after electromagnetic exposure (day 0), a reduction of over 20% in the maximum light scattering intensity at 488 nm wavelength in both nondegassed and degassed samples was observed. By contrast, on day 12 the difference was observed only in nondegassed water samples. The latter effect was attributed to the different geometries of the containers combined with the basic origin of the whole phenomenon due to gas bubbles present in water. By the use of dynamic light scattering, the bubble mean diameter was estimated to be around 300 nm. Our results suggest that the electromagnetic exposure acts on gas nanobubbles present in water and emphasizes the role of the gas/liquid interface. The possibility that exposure to electromagnetic fields disturbs the ionic double layer that contributes to bubble stabilization in water is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...