Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Energy Fuels ; 37(16): 12079-12088, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37609064

RESUMO

Polymeric amine encapsulation in high surface area MCM-41 particles for CO2 capture is well established but has the drawback of leaching out the water-soluble polymer upon exposure to aqueous environments. Alternatively, chemical (covalent) grafting amine functional groups from an alkoxysilane such as 3-aminopropyltriethoxysilane (APTES) on MCM-41 offer better stability against this drawback. However, the diffusional restriction exhibited by the narrow uniform MCM-41 pores (2-4 nm) may impede amine functionalization of the available silanol groups within the inner mesoporous core. This leads to incomplete amine functionalization and could reduce the CO2 adsorption capacity in such materials. Our concept to improve access to the MCM-41 interior is based on the incorporation of nanostraws with larger inner diameter (15-30 nm) to create a hierarchical porosity and enhance the molecular transport of APTES. Halloysite nanotubes (HNT) are used as tubular straws that are integrated into the MCM-41 matrix using an aerosol-assisted synthesis method. Characterization results show that the intrinsic structure of MCM-41 remains unaltered after the incorporation of the nanostraws and amine functionalization. At an optimal APTES loading of 0.5 g (X = 2.0), the amine-functionalized composite of MCM-41 with straws (APTES/M40H) has a 20% higher adsorption capacity than the amine-modified MCM-41 (APTES/MCM-41) adsorbent. Furthermore, the CO2 adsorption capacity APTES/M40H doubles that of APTES/MCM-41 when normalized based on the composition of MCM-41 in the composite particle with straws. The facile integration of nanostraws in MCM-41 leading to hierarchical porosities could be effective toward the mitigation of diffusional restriction in porous materials with potential for other catalytic and adsorption technologies.

2.
Materials (Basel) ; 16(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614733

RESUMO

Sustainable production of renewable carbon-based fuels and chemicals remains a necessary but immense challenge in the fight against climate change. Bio-oil derived from lignocellulosic biomass requires energy-intense upgrading to produce usable fuels or chemicals. Traditional upgrading methods such as hydrodeoxygenation (HDO) require high temperatures (200−400 °C) and 200 bar of external hydrogen. Electrochemical hydrogenation (ECH), on the other hand, operates at low temperatures (<80 °C), ambient pressure, and does not require an external hydrogen source. These environmental and economically favorable conditions make ECH a promising alternative to conventional thermochemical upgrading processes. ECH combines renewable electricity with biomass conversion and harnesses intermediately generated electricity to produce drop-in biofuels. This review aims to summarize recent studies on bio-oil upgrading using ECH focusing on the development of novel catalytic materials and factors impacting ECH efficiency and products. Here, electrode design, reaction temperature, applied overpotential, and electrolytes are analyzed for their impacts on overall ECH performance. We find that through careful reaction optimization and electrode design, ECH reactions can be tailored to be efficient and selective for the production of renewable fuels and chemicals. Preliminary economic and environmental assessments have shown that ECH can be viable alternative to convention upgrading technologies with the potential to reduce CO2 emissions by 3 times compared to thermochemical upgrading. While the field of electrochemical upgrading of bio-oil has additional challenges before commercialization, this review finds ECH a promising avenue to produce renewable carbon-based drop-in biofuels. Finally, based on the analyses presented in this review, directions for future research areas and optimization are suggested.

3.
ACS Appl Nano Mater ; 4(8): 8455-8464, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34485846

RESUMO

In many porous catalyst supports, the accessibility of interior catalytic sites to reactant species could be restricted due to limitations of reactant transport through pores comparable to reactant dimensions. The interplay between reaction and diffusion in porous catalysts is defined through the Thiele modulus and the effectiveness factor, with diffusional restrictions leading to high Thiele moduli, reduced effectivess factors, and a reduction in the observed reaction rate. We demonstrate a method to integrate ceramic nanostraws into the interior of ordered mesoporous silica MCM-41 to mitigate diffusional restrictions. The nanostraws are the natural aluminosilicate tubular clay minerals known as halloysite. Such halloysite nanotubes (HNTs) have a lumen diameter of 15-30 nm, which is significantly larger than the 2-4 nm pores of MCM-41, thus facilitating entry and egress of larger molecules to the interior of the pellet. The method of integrating HNT nanostraws into MCM-41 is through a ship-in-a-bottle approach of synthesizing MCM-41 in the confined volume of an aerosol droplet that contains HNT nanotubes. The concept is applied to a system in which microcrystallites of Ni@ZSM-5 are incorporated into MCM-41. Using the liquid phase reduction of nitrophenol as a model reaction catalyzed by Ni@ZSM-5, we show that the insertion of HNT nanostraws into this composite leads to a 50% increase in the effectiveness factor. The process of integrating nanostraws into MCM-41 through the aerosol-assisted approach is a one-step facile method that complements traditional catalyst preparation techniques. The facile and scalable synthesis technique toward the mitigation of diffusional restrictions has implications to catalysis and separation technologies.

4.
ACS Omega ; 6(13): 8870-8883, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33842758

RESUMO

Phenol and its derivatives are highly toxic chemicals and are widely used in various industrial applications. Therefore, the industrial wastewater streams must be treated to lower the concentration of phenol before discharge. At the same time, food waste has been a major environmental problem globally and the scientific community is eagerly seeking effective management solutions. The objective of this study was to understand the potential of utilizing food waste as a renewable and sustainable resource for the production of activated carbons for the removal of phenol from water streams. The food waste was pyrolyzed and physically activated by steam. The pyrolysis and activation conditions were optimized to obtain activated carbons with high surface area. The activated carbon with the highest surface area, 745 m2 g-1, was derived via activation at 950 °C for 1 h. A detailed characterization of the physicochemical and morphological properties of the activated carbons derived from food waste was performed and a comprehensive adsorption study was conducted to investigate the potential of using the activated carbons for phenol removal from water streams. The effects of pH, contact time, and initial concentration of phenol in water were studied and adsorption models were applied to experimental data to interpret the adsorption process. A remarkable phenol adsorption capacity of 568 mg g-1 was achieved. The results indicated that the pseudo-second-order kinetic model was better over the pseudo-second-order kinetic model to describe the kinetics of adsorption. The intraparticle diffusion model showed multiple regions, suggesting that the intraparticle diffusion was not the sole rate-controlling step of adsorption. The Langmuir isotherm model was the best model out of Freundlich, Temkin, and Dubinin-Radushkevich models to describe the phenol adsorption on activated carbons derived from food waste. This study demonstrated that food waste could be utilized to produce activated carbon and it showed promising capacity on phenol removal.

5.
Langmuir ; 34(48): 14608-14616, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30428674

RESUMO

Nanoscale capsule-type particles with stimuli-respondent transport of chemical species into and out of the capsule are of significant technological interest. We describe the facile synthesis, properties, and applications of a temperature-responsive silica-poly( N-isopropylacrylamide) (PNIPAM) composite consisting of hollow silica particles with ordered mesoporous shells and a complete PNIPAM coating layer. These composites start with highly monodisperse, hollow mesoporous silica particles fabricated with precision using a template-driven approach. The particles possess a high specific surface area (1771 m2/g) and large interior voids that are accessible to the exterior environment through pore channels of the silica shell. An exterior PNIPAM coating provides thermoresponsiveness to the composite, acting as a gate to regulate the uptake and release of functional molecules. Uptake and release of a model compound (rhodamine B) occurs at temperatures below the lower critical solution temperature (LCST) of 32 °C, while the dehydrated hydrophobic polymer layer collapses over the particle at temperatures above the LCST, leading to a shutoff of uptake and release. These transitions are also manifest at an oil-water interface, where the polymer-coated hollow particles stabilize oil-in-water emulsions at temperatures below the LCST and destabilize the emulsions at temperatures above the LCST. Cryogenic scanning electron microscopy indicates patchlike particle structures at the oil-water interface of the stabilized emulsions. The silica-PNIPAM composite therefore couples advantages from both the hollow mesoporous silica structure and the thermoresponsive polymer.

6.
ACS Appl Mater Interfaces ; 10(16): 13542-13551, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29620856

RESUMO

Thin-shelled hollow silica particles are synthesized using an aerosol-based process where the concentration of a silica precursor tetraethyl orthosilicate (TEOS) determines the shell thickness. The synthesis involves a novel concept of the salt bridging of an iron salt, FeCl3, to a cationic surfactant, cetyltrimethylammonium bromide (CTAB), which modulates the templating effect of the surfactant on silica porosity. The salt bridging leads to a sequestration of the surfactant in the interior of the droplet with the formation of a dense silica shell around the organic material. Subsequent calcination consistently results in hollow particles with encapsulated iron oxides. Control of the TEOS levels leads to the generation of ultrathin-shelled (∼10 nm) particles which become susceptible to rupture upon exposure to ultrasound. The dense silica shell that is formed is impervious to entry of chemical species. Mesoporosity is restored to the shell through desilication and reassembly, again using CTAB as a template. The mesoporous-shelled hollow particles show good reactivity toward the reductive dichlorination of trichloroethylene (TCE), indicating access of TCE to the particle interior. The ordered mesoporous thin-shelled particles containing active iron species are viable systems for chemical reaction and catalysis.

7.
Bioresour Technol ; 191: 187-96, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25997007

RESUMO

The objective of the present work is to explore the particularities of a micro-scale experimental apparatus with regards to the study of catalytic fast pyrolysis (CFP) of biomass. In situ and ex situ CFP of miscanthus × giganteus were performed with ZSM-5 catalyst. Higher permanent gas yields and higher selectivity to aromatics in the bio-oil were observed from ex situ CFP, but higher bio-oil yields were recorded during in situ CFP. Solid yields were comparable across both configurations. The results from in situ and ex situ PyGC were also compared with the product yields and selectivities obtained using a bench-scale, spouted-bed reactor. The bio-oil composition and overall product distribution for the PyGC ex situ configuration more closely resembled that of the spouted-bed reactor. The coke/char from in situ CFP in the PyGC was very similar in nature to that obtained from the spouted-bed reactor.


Assuntos
Reatores Biológicos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Catálise
8.
Bioresour Technol ; 169: 188-197, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25058293

RESUMO

A conical spouted bed reactor was designed and tested for fast catalytic pyrolysis of miscanthus × giganteus over Zeolite Socony Mobil-5 (ZSM-5) catalyst, in the temperature range of 400-600 °C and catalyst to biomass ratios 1:1-5:1. The effect of operating conditions on the lumped product distribution, bio-oil selectivity and gas composition was investigated. In particular, it was shown that higher temperature favors the production of gas and bio-oil aromatics and results in lower solid and liquid yields. Higher catalyst to biomass ratios increased the gas yield, at the expense of liquid and solid products, while enhancing aromatic selectivity. The separate catalytic effects of ZSM-5 catalyst and its Al2O3 support were studied. The support contributes to increased coke/char formation, due to the uncontrolled spatial distribution and activity of its alumina sites. The presence of ZSM-5 zeolite in the catalyst enhanced the production of aromatics due to its proper pore size distribution and activity.


Assuntos
Reatores Biológicos , Biotecnologia/instrumentação , Biotecnologia/métodos , Cruzamentos Genéticos , Temperatura Alta , Poaceae/metabolismo , Biocombustíveis , Biomassa , Catálise , Desenho de Equipamento , Gases/análise , Hidrodinâmica , Zeolitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...