Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(17): eabl6339, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486732

RESUMO

BRAF-targeted kinase inhibitors (KIs) are used to treat malignancies including BRAF-mutant non-small cell lung cancer, colorectal cancer, anaplastic thyroid cancer, and, most prominently, melanoma. However, KI selection criteria in patients remain unclear, as are pharmacokinetic/pharmacodynamic (PK/PD) mechanisms that may limit context-dependent efficacy and differentiate related drugs. To address this issue, we imaged mouse models of BRAF-mutant cancers, fluorescent KI tracers, and unlabeled drug to calibrate in silico spatial PK/PD models. Results indicated that drug lipophilicity, plasma clearance, faster target dissociation, and, in particular, high albumin binding could limit dabrafenib action in visceral metastases compared to other KIs. This correlated with retrospective clinical observations. Computational modeling identified a timed strategy for combining dabrafenib and encorafenib to better sustain BRAF inhibition, which showed enhanced efficacy in mice. This study thus offers principles of spatial drug action that may help guide drug development, KI selection, and combination.

2.
Mol Oncol ; 16(5): 1184-1199, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34719109

RESUMO

ERK3, officially known as mitogen-activated protein kinase 6 (MAPK6), is a poorly studied mitogen-activated protein kinase (MAPK). Recent studies have revealed the upregulation of ERK3 expression in cancer and suggest an important role for ERK3 in promoting cancer cell growth and invasion in some cancers, in particular lung cancer. However, it is unknown whether ERK3 plays a role in spontaneous tumorigenesis in vivo. To determine the role of ERK3 in lung tumorigenesis, we created a conditional ERK3 transgenic mouse line in which ERK3 transgene expression is controlled by Cre recombinase. By crossing these transgenic mice with a mouse line harboring a lung tissue-specific Cre recombinase transgene driven by a club cell secretory protein gene promoter (CCSP-iCre), we have found that conditional ERK3 overexpression cooperates with phosphatase and tensin homolog (PTEN) deletion to induce the formation of lung adenocarcinomas (LUADs). Mechanistically, ERK3 overexpression stimulates activating phosphorylations of erb-b2 receptor tyrosine kinases 2 and 3 (ERBB2 and ERBB3) by upregulating Sp1 transcription factor (SP1)-mediated gene transcription of neuregulin 1 (NRG1), a potent ligand for ERBB2/ERBB3. Our study has revealed a bona fide tumor-promoting role for ERK3 using genetically engineered mouse models. Together with previous findings showing the roles of ERK3 in cultured cells and in a xenograft lung tumor model, our findings corroborate that ERK3 acts as an oncoprotein in promoting LUAD development and progression.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Animais , Carcinogênese , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Proteína Quinase 6 Ativada por Mitógeno/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação
3.
Cancer Discov ; 11(5): 1212-1227, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33372007

RESUMO

Cytosolic DNA is characteristic of chromosomally unstable metastatic cancer cells, resulting in constitutive activation of the cGAS-STING innate immune pathway. How tumors co-opt inflammatory signaling while evading immune surveillance remains unknown. Here, we show that the ectonucleotidase ENPP1 promotes metastasis by selectively degrading extracellular cGAMP, an immune-stimulatory metabolite whose breakdown products include the immune suppressor adenosine. ENPP1 loss suppresses metastasis, restores tumor immune infiltration, and potentiates response to immune checkpoint blockade in a manner dependent on tumor cGAS and host STING. Conversely, overexpression of wild-type ENPP1, but not an enzymatically weakened mutant, promotes migration and metastasis, in part through the generation of extracellular adenosine, and renders otherwise sensitive tumors completely resistant to immunotherapy. In human cancers, ENPP1 expression correlates with reduced immune cell infiltration, increased metastasis, and resistance to anti-PD-1/PD-L1 treatment. Thus, cGAMP hydrolysis by ENPP1 enables chromosomally unstable tumors to transmute cGAS activation into an immune-suppressive pathway. SIGNIFICANCE: Chromosomal instability promotes metastasis by generating chronic tumor inflammation. ENPP1 facilitates metastasis and enables tumor cells to tolerate inflammation by hydrolyzing the immunotransmitter cGAMP, preventing its transfer from cancer cells to immune cells.This article is highlighted in the In This Issue feature, p. 995.


Assuntos
Metástase Neoplásica , Neoplasias/terapia , Nucleotídeos Cíclicos/metabolismo , Evasão Tumoral , Animais , Humanos , Hidrólise , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Neoplasias/patologia
4.
Cell Syst ; 11(5): 478-494.e9, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33113355

RESUMO

Targeted inhibition of oncogenic pathways can be highly effective in halting the rapid growth of tumors but often leads to the emergence of slowly dividing persister cells, which constitute a reservoir for the selection of drug-resistant clones. In BRAFV600E melanomas, RAF and MEK inhibitors efficiently block oncogenic signaling, but persister cells emerge. Here, we show that persister cells escape drug-induced cell-cycle arrest via brief, sporadic ERK pulses generated by transmembrane receptors and growth factors operating in an autocrine/paracrine manner. Quantitative proteomics and computational modeling show that ERK pulsing is enabled by rewiring of mitogen-activated protein kinase (MAPK) signaling: from an oncogenic BRAFV600E monomer-driven configuration that is drug sensitive to a receptor-driven configuration that involves Ras-GTP and RAF dimers and is highly resistant to RAF and MEK inhibitors. Altogether, this work shows that pulsatile MAPK activation by factors in the microenvironment generates a persistent population of melanoma cells that rewires MAPK signaling to sustain non-genetic drug resistance.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Melanoma/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Melanoma/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/fisiologia , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Proteínas ras/genética
5.
Cancer Res ; 80(4): 798-810, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31882401

RESUMO

Patients with melanoma resistant to RAF/MEK inhibitors (RMi) are frequently resistant to other therapies, such as immune checkpoint inhibitors (ICI), and individuals succumb to their disease. New drugs that control tumor growth and favorably modulate the immune environment are therefore needed. We report that the small-molecule CX-6258 has potent activity against both RMi-sensitive (RMS) and -resistant (RMR) melanoma cell lines. Haspin kinase (HASPIN) was identified as a target of CX-6258. HASPIN inhibition resulted in reduced proliferation, frequent formation of micronuclei, recruitment of cGAS, and activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. In murine models, CX-6258 induced a potent cGAS-dependent type-I IFN response in tumor cells, increased IFNγ-producing CD8+ T cells, and reduced Treg frequency in vivo. HASPIN was more strongly expressed in malignant compared with healthy tissue and its inhibition by CX-6258 had minimal toxicity in ex vivo-expanded human tumor-infiltrating lymphocytes (TIL), proliferating TILs, and in vitro differentiated neurons, suggesting a potential therapeutic index for anticancer therapy. Furthermore, the activity of CX-6258 was validated in several Ewing sarcoma and multiple myeloma cell lines. Thus, HASPIN inhibition may overcome drug resistance in melanoma, modulate the immune environment, and target a vulnerability in different cancer lineages. SIGNIFICANCE: HASPIN inhibition by CX-6258 is a novel and potent strategy for RAF/MEK inhibitor-resistant melanoma and potentially other tumor types. HASPIN inhibition has direct antitumor activity and induces a favorable immune microenvironment.


Assuntos
Azepinas/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Indóis/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Melanoma/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Animais , Azepinas/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/imunologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Indóis/uso terapêutico , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Melanoma/patologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases raf/antagonistas & inibidores
6.
J Cell Physiol ; 229(10): 1529-37, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24585635

RESUMO

Despite a regain of interest recently in ERK3 kinase signaling, the molecular regulations of both ERK3 gene expression and protein kinase activity are still largely unknown. While it is shown that disruption of ERK3 gene causes neonatal lethality, cell type-specific functions of ERK3 signaling remain to be explored. In this study, we report that ERK3 gene expression is upregulated by cytokines through c-Jun in endothelial cells; c-Jun binds to the ERK3 gene and regulates its transcription. We further reveal a new role for ERK3 in regulating endothelial cell migration, proliferation and tube formation by upregulating SRC-3/SP-1-mediated VEGFR2 expression. The underlying molecular mechanism involves ERK3-stimulated formation of a transcriptional complex involving coactivator SRC-3, transcription factor SP-1 and the secondary coactivator CBP. Taken together, our study identified a molecular regulatory mechanism of ERK3 gene expression and revealed a previously unknown role of ERK3 in regulating endothelial cell functions.


Assuntos
Células Endoteliais da Veia Umbilical Humana/enzimologia , Proteína Quinase 6 Ativada por Mitógeno/metabolismo , Neovascularização Fisiológica , Coativador 3 de Receptor Nuclear/metabolismo , Fator de Transcrição Sp1/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Sítios de Ligação , Proteína de Ligação a CREB/metabolismo , Movimento Celular , Proliferação de Células , Regulação Enzimológica da Expressão Gênica , Células HeLa , Humanos , Proteína Quinase 6 Ativada por Mitógeno/genética , Coativador 3 de Receptor Nuclear/genética , Regiões Promotoras Genéticas , Interferência de RNA , Transdução de Sinais , Fator de Transcrição Sp1/genética , Fatores de Tempo , Transcrição Gênica , Transfecção , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
7.
J Biomed Inform ; 46(2): 238-51, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23026233

RESUMO

OBJECTIVES: This paper presents a methodology for recovering and decomposing Swanson's Raynaud Syndrome-Fish Oil hypothesis semi-automatically. The methodology leverages the semantics of assertions extracted from biomedical literature (called semantic predications) along with structured background knowledge and graph-based algorithms to semi-automatically capture the informative associations originally discovered manually by Swanson. Demonstrating that Swanson's manually intensive techniques can be undertaken semi-automatically, paves the way for fully automatic semantics-based hypothesis generation from scientific literature. METHODS: Semantic predications obtained from biomedical literature allow the construction of labeled directed graphs which contain various associations among concepts from the literature. By aggregating such associations into informative subgraphs, some of the relevant details originally articulated by Swanson have been uncovered. However, by leveraging background knowledge to bridge important knowledge gaps in the literature, a methodology for semi-automatically capturing the detailed associations originally explicated in natural language by Swanson, has been developed. RESULTS: Our methodology not only recovered the three associations commonly recognized as Swanson's hypothesis, but also decomposed them into an additional 16 detailed associations, formulated as chains of semantic predications. Altogether, 14 out of the 19 associations that can be attributed to Swanson were retrieved using our approach. To the best of our knowledge, such an in-depth recovery and decomposition of Swanson's hypothesis has never been attempted. CONCLUSION: In this work therefore, we presented a methodology to semi-automatically recover and decompose Swanson's RS-DFO hypothesis using semantic representations and graph algorithms. Our methodology provides new insights into potential prerequisites for semantics-driven Literature-Based Discovery (LBD). Based on our observations, three critical aspects of LBD include: (1) the need for more expressive representations beyond Swanson's ABC model; (2) an ability to accurately extract semantic information from text; and (3) the semantic integration of scientific literature and structured background knowledge.


Assuntos
Biologia Computacional/métodos , Mineração de Dados/métodos , Descoberta do Conhecimento/métodos , Modelos Teóricos , Semântica , Viscosidade Sanguínea , Biologia Computacional/tendências , Mineração de Dados/tendências , Humanos , Agregação Plaquetária , Doença de Raynaud
8.
Breast Cancer Res ; 13(3): R80, 2011 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-21834972

RESUMO

INTRODUCTION: Current clinical strategies for treating hormonal breast cancer involve the use of anti-estrogens that block estrogen receptor (ER)α functions and aromatase inhibitors that decrease local and systemic estrogen production. Both of these strategies improve outcomes for ERα-positive breast cancer patients, however, development of therapy resistance remains a major clinical problem. Divergent molecular pathways have been described for this resistant phenotype and interestingly, the majority of downstream events in these resistance pathways converge upon the modulation of cell cycle regulatory proteins including aberrant activation of cyclin dependent kinase 2 (CDK2). In this study, we examined whether the CDK inhibitor roscovitine confers a tumor suppressive effect on therapy-resistant breast epithelial cells. METHODS: Using various in vitro and in vivo assays, we tested the effect of roscovitine on three hormonal therapy-resistant model cells: (a) MCF-7-TamR (acquired tamoxifen resistance model); (b) MCF-7-LTLTca (acquired letrozole resistance model); and (c) MCF-7-HER2 that exhibit tamoxifen resistance (ER-growth factor signaling cross talk model). RESULTS: Hormonal therapy-resistant cells exhibited aberrant activation of the CDK2 pathway. Roscovitine at a dose of 20 µM significantly inhibited the cell proliferation rate and foci formation potential of all three therapy-resistant cells. The drug treatment substantially increased the proportion of cells in G2/M cell cycle phase with decreased CDK2 activity and promoted low cyclin D1 levels. Interestingly, roscovitine also preferentially down regulated the ERα isoform and ER-coregulators including AIB1 and PELP1. Results from xenograft studies further showed that roscovitine can attenuate growth of therapy-resistant tumors in vivo. CONCLUSIONS: Roscovitine can reduce cell proliferation and survival of hormone therapy-resistant breast cancer cells. Our results support the emerging concept that inhibition of CDK2 activity has the potential to abrogate growth of hormonal therapy-resistant cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Purinas/farmacologia , Animais , Antineoplásicos Hormonais/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas Correpressoras/biossíntese , Proteínas Correpressoras/efeitos dos fármacos , Ciclina D1/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Coativador 3 de Receptor Nuclear/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Roscovitina , Fatores de Transcrição/biossíntese , Fatores de Transcrição/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Breast Cancer Res Treat ; 130(2): 377-85, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21184269

RESUMO

The estrogen receptor (ER) is implicated in the progression of breast cancer. Despite positive effects of hormonal therapy, initial or acquired resistance to endocrine therapies frequently occurs. Recent studies suggested ERα-coregulator PELP1 and growth factor receptor ErbB2/HER2 play an essential role in hormonal therapy responsiveness. Src axis couples ERα with HER2 and PELP1, thus representing a new pathway for targeted therapy resistance. To establish the significance of ER-Src axis in PELP1 and HER2 mediated therapy resistance, we have generated model cells that stably express Src-shRNA under conditions of PELP1, HER2 deregulation. Depletion of Src using shRNA substantially reduced E2 mediated activation of Src and MAPK activation in resistant model cells. Pharmacological inhibition of Src using dasatinib, an orally available inhibitor substantially inhibited the growth of therapy resistant MCF7-PELP1, MCF7-HER2, and MCF7-Tam model cells in proliferation assays. In post-menopausal xenograft based studies, treatment with dasatinib significantly inhibited the growth of therapy resistant cells. IHC analysis revealed that the tumors were ERα positive, and dasatinib treated tumors exhibited alterations in Src and MAPK signaling pathways. Combinatorial therapy of tamoxifen with dasatinib showed better therapeutic effect compared to single agent therapy on the growth of therapy resistant PELP1 driven tumors. The results from our study showed that ER-Src axis play an important role in promoting hormonal resistance by proto-oncogenes such as HER2, PELP1, and blocking this axis prevents the development of hormonal independence in vivo. Since PELP1, HER2, and Src kinase are commonly deregulated in breast cancers, combination therapies using both endocrine agents and dasatinib may have better therapeutic effect by delaying the development of hormonal resistance.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/metabolismo , Pirimidinas/farmacologia , Tiazóis/farmacologia , Quinases da Família src/metabolismo , Animais , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Dasatinibe , Sinergismo Farmacológico , Feminino , Técnicas de Silenciamento de Genes , Humanos , Letrozol , Camundongos , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Fosforilação , Pirimidinas/uso terapêutico , Interferência de RNA , Receptor ErbB-2/metabolismo , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Tiazóis/uso terapêutico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triazóis/farmacologia , Triazóis/uso terapêutico , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...