Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35159756

RESUMO

In this work, we present the characterization and electrochemical performance of various ternary silicon oxycarbide/graphite/tin (SiOC/C/Sn) nanocomposites as anodes for lithium-ion batteries. In binary SiOC/Sn composites, tin nanoparticles may be produced in situ via carbothermal reduction of SnO2 to metallic Sn, which consumes free carbon from the SiOC ceramic phase, thereby limiting the carbon content in the final ceramic nanocomposite. Therefore, to avoid drawbacks with carbon depletion, we used graphite as a substitute during the synthesis of precursors. The ternary composites were synthesized from liquid precursors and flake graphite using the ultrasound-assisted hydrosilylation method and pyrolysis at 1000 °C in an Ar atmosphere. The role of the graphitic component is to ensure good electric conductivity and the softness of the material, which are crucial for long term stability during alloying-dealloying processes. The presented approach allows us to increase the content of the tin precursor from 40 wt.% to 60 wt.% without losing the electrochemical stability of the final material. The charge/discharge capacity (at 372 mA g-1 current rate) of the tailored SiOC/C/Sn composite is about 100 mAh g-1 higher compared with that of the binary SiOC/Sn composite. The ternary composites, however, are more sensitive to high current rates (above 372 mA g-1) compared to the binary one because of the presence of graphitic carbon.

2.
Materials (Basel) ; 13(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244703

RESUMO

The structural, thermal, electrical and mechanical properties of fully dense B4C ceramics, sintered using Spark Plasma Sintering (SPS), were studied and compared to the properties of B4C ceramics previously published in the literature. New results on B4C's mechanical responses were obtained by nanoindentation and ring-on-ring biaxial strength testing. The findings contribute to a more complete knowledge of the properties of B4C ceramics, an important material in many industrial applications.

3.
ACS Appl Mater Interfaces ; 12(15): 17244-17253, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32216331

RESUMO

Polymer-derived ceramics (PDC) have recently gained increased interest in the field of bioceramics. Among PDC's, carbon-rich silicon oxycarbide ceramics (SiOC) possess good combined electrical and mechanical properties. Their durability in aggressive environments and proposed cytocompatibility makes them an attractive material for fabrication of bio-MEMS devices such as pacemaker electrodes. The aim of the present study is to demonstrate the remarkable mechanical and electrical properties, biological response of PDCs modified with titanium (Ti) and their potential for application as pacemaker electrodes. Therefore, a new type of SiOC modified with Ti fillers was synthesized via PDC route using a Pt-catalyzed hydrosilylation reaction. Preceramic green bodies were pyrolyzed at 1000 °C under an argon atmosphere to achieve amorphous ceramics. Electrical and mechanical characterization of SiCxO2(1-x)/TiOxCy ceramics revealed a maximum electrical conductivity of 10 S cm-1 and a flexural strength of maximal 1 GPa, which is acceptable for pacemaker applications. Ti incorporation is found to be beneficial for enhancing the electrical conductivity of SiOC ceramics and the conductivity values were increased with Ti doping and reached a maximum for the composition with 30 wt % Ti precursor. Cytocompatibility was demonstrated for the PDC SiOC ceramics as well as SiOC ceramics modified with Ti fillers. Cytocompatibility was also demonstrated for SiTiOC20 electrodes under pacing conditions by monitoring of cells in an in vitro 3D environment. Collectively, these data demonstrate the great potential of polymer-derived SiOC ceramics to be used as pacemaker electrodes.


Assuntos
Materiais Biocompatíveis/química , Compostos Inorgânicos de Carbono/química , Cerâmica/química , Polímeros/química , Compostos de Silício/química , Titânio/química , Materiais Biocompatíveis/farmacologia , Células Cultivadas , Condutividade Elétrica , Eletrodos Implantados , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Humanos , Teste de Materiais , Análise Espectral Raman , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...