Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854443

RESUMO

Until recently, air quality impacts from wildfires were predominantly determined based on data from permanent stationary regulatory air pollution monitors. However, low-cost particulate matter (PM) sensors are now widely used by the public as a source of air quality information during wildfires, although their performance during smoke impacted conditions has not been thoroughly evaluated. We collocated three types of low-cost fine PM (PM2.5) sensors with reference instruments near multiple fires in the western and eastern United States (maximum hourly PM2.5 = 295 µg/m3). Sensors were moderately to strongly correlated with reference instruments (hourly averaged r2 = 0.52-0.95), but overpredicted PM2.5 concentrations (normalized root mean square errors, NRMSE = 80-167%). We developed a correction equation for wildfire smoke that reduced the NRMSE to less than 27%. Correction equations were specific to each sensor package, demonstrating the impact of the physical configuration and the algorithm used to translate the size and count information into PM2.5 concentrations. These results suggest the low-cost sensors can fill in the large spatial gaps in monitoring networks near wildfires with mean absolute errors of less than 10 µg/m3 in the hourly PM2.5 concentrations when using a sensor-specific smoke correction equation.

2.
Atmos Meas Tech ; 13(6)2020.
Artigo em Inglês | MEDLINE | ID: mdl-34497673

RESUMO

Mobile platform measurements provide new opportunities for characterizing spatial variations of air pollution within urban areas, identifying emission sources, and enhancing knowledge of atmospheric processes. The Aclima, Inc. mobile measurement and data acquisition platform was used to equip four Google Street View cars with research-grade instruments, two of which were available for the duration of this study. On-road measurements of air quality were made during a series of sampling campaigns between May 2016 and September 2017 at high (i.e., 1-second [s]) temporal and spatial resolution at several California locations: Los Angeles, San Francisco, and the northern San Joaquin Valley (including non-urban roads and the cities of Tracy, Stockton, Manteca, Merced, Modesto, and Turlock). The results demonstrate that the approach is effective for quantifying spatial variations of air pollutant concentrations over measurement periods as short as two weeks. Measurement accuracy and precision are evaluated using results of weekly performance checks and periodic audits conducted through the sampler inlets, which show that research instruments located within stationary vehicles are capable of reliably measuring nitric oxide (NO), nitrogen dioxide (NO2), ozone (O3), methane (CH4) black carbon (BC), and particle number (PN) concentration with bias and precision ranging from <10 % for gases to <25 % for BC and PN at 1-s time resolution. The quality of the mobile measurements in the ambient environment is examined by comparisons with data from an adjacent (< 9 m) stationary regulatory air quality monitoring site and by paired collocated vehicle comparisons, both stationary and driving. The mobile measurements indicate that U.S. EPA classifications of two Los Angeles stationary regulatory monitors' scales of representation are appropriate. Paired time-synchronous mobile measurements are used to characterize the spatial scales of concentration variations when vehicles were separated by <1 to 10 kilometers (km). A data analysis approach is developed to characterize spatial variations while limiting the confounding influence of diurnal variability. The approach is illustrated using data from San Francisco, revealing 1-km scale differences in mean NO2 and O3 concentrations up to 117 % and 46 %, respectively, of mean values during a two-week sampling period. In San Francisco and Los Angeles, spatial variations up to factors of 6 to 8 occur at sampling scales of 100 - 300m, corresponding to 1-minute averages.

3.
Nat Commun ; 9(1): 4743, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413701

RESUMO

Reactive nitrogen from human sources (e.g., nitrogen dioxide, NO2) is taken up by plant roots following deposition to soils, but can also be assimilated by leaves directly from the atmosphere. Leaf uptake should alter plant metabolism and overall nitrogen balance and indirectly influence plant consumers; however, these consequences remain poorly understood. Here we show that direct foliar assimilation of NO2 increases levels of nitrogen-based defensive metabolites in leaves and reduces herbivore consumption and growth. These results suggest that atmospheric reactive nitrogen could have cascading negative effects on communities of herbivorous insects. We further show that herbivory induces a decrease in foliar uptake, indicating that consumers could limit the ability of vegetation to act as a sink for nitrogen pollutants (e.g., smog from mobile emissions). Our study suggests that the interactions of foliar uptake, plant defence and herbivory could have significant implications for understanding the environmental consequences of reactive nitrogen.

4.
Sci Total Environ ; 625: 909-919, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29996462

RESUMO

We provide updated spatial distribution and inventory data for on-road NH3 emissions for the continental United States (U.S.) On-road NH3 emissions were determined from on-road CO2 emissions data and empirical NH3:CO2 vehicle emissions ratios. Emissions of NH3 from on-road sources in urbanized regions are typically 0.1-1.3tkm-2yr-1 while NH3 emissions in agricultural regions generally range from 0.4-5.5tkm-2yr-1, with a few hotspots as high as 5.5-11.2tkm-2yr-1. Counties with higher vehicle NH3 emissions than from agriculture include 40% of the U.S. POPULATION: The amount of wet inorganic N deposition as NH4+ from the National Atmospheric Deposition Program (NADP) network ranged from 37 to 83% with a mean of 58.7%. Only 4% of the NADP sites across the U.S. had <45% of the N deposition as NH4+ based on data from 2014 to 2016, illustrating the near-universal elevated proportions of NH4+ in deposition across the U.S. Case studies of on-road NH3 emissions in relation to N deposition include four urban sites in Oregon and Washington where the average NH4-N:NO3-N ratio in bulk deposition was 2.3. At urban sites in the greater Los Angeles Basin, bulk deposition of NH4-N and NO3-N were equivalent, while NH4-N:NO3-N in throughfall under shrubs ranged from 0.6 to 1.7. The NH4-N:NO3-N ratio at 7-10 sites in the Lake Tahoe Basin averaged 1.4 and 1.6 in bulk deposition and throughfall, and deposition of NH4-N was strongly correlated with summertime NH3 concentrations. On-road emissions of NH3 should not be ignored as an important source of atmospheric NH3, as a major contributor to particulate air pollution, and as a driver of N deposition in urban and urban-affected regions.

5.
Oecologia ; 172(1): 47-58, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23070141

RESUMO

Foliar nitrogen isotope (δ(15)N) composition patterns have been linked to soil N, mycorrhizal fractionation, and within-plant fractionations. However, few studies have examined the potential importance of the direct foliar uptake of gaseous reactive N on foliar δ(15)N. Using an experimental set-up in which the rate of mycorrhizal infection was reduced using a fungicide, we examined the influence of mycorrhizae on foliar δ(15)N in potted red maple (Acer rubrum) seedlings along a regional N deposition gradient in New York State. Mycorrhizal associations altered foliar δ(15)N values in red maple seedlings from 0.06 to 0.74 ‰ across sites. At the same sites, we explored the predictive roles of direct foliar N uptake, soil δ(15)N, and mycorrhizae on foliar δ(15)N in adult stands of A. rubrum, American beech (Fagus grandifolia), black birch (Betula lenta), and red oak (Quercus rubra). Multiple regression analysis indicated that ambient atmospheric nitrogen dioxide (NO2) concentration explained 0, 69, 23, and 45 % of the variation in foliar δ(15)N in American beech, red maple, red oak, and black birch, respectively, after accounting for the influence of soil δ(15)N. There was no correlation between foliar δ(13)C and foliar %N with increasing atmospheric NO2 concentration in most species. Our findings suggest that total canopy uptake, and likely direct foliar N uptake, of pollution-derived atmospheric N deposition may significantly impact foliar δ(15)N in several dominant species occurring in temperate forest ecosystems.


Assuntos
Isótopos de Nitrogênio/metabolismo , Árvores/metabolismo , Acer/metabolismo , Betula/metabolismo , Fagus/metabolismo , Micorrizas/fisiologia , Nitrogênio/metabolismo , Quercus/metabolismo , Solo/química
6.
New Phytol ; 177(4): 946-955, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18069953

RESUMO

The magnitude and impact of gaseous nitrogen dioxide (NO(2)) directly entering the leaves were investigated using foliar nitrogen isotopic composition (delta(15)N) values in tomato (Lycopersicon esculentum) and tobacco (Nicotiana tabacum). Using a hydroponics-fumigation system, (15)NO(2) (20 and 40 ppb) was supplied to shoot systems and (50 and 500 microM) was supplied to root systems. Morphological, stable isotope and nitrate reductase activity (NRA) analyses were used to quantify foliar NO(2) uptake and to examine whether realistic concentrations of NO(2) influenced plant metabolism. Nicotiana tabacum and L. esculentum incorporated 15 and 11%, respectively, of (15)NO(2)-N into total biomass via foliar uptake under low supply. On a mass basis, N. tabacum and L. esculentum incorporated 3.3 +/- 0.9 and 3.1 +/- 0.8 mg of (15)NO(2)-N into biomass, respectively, regardless of availability. There were no strong effects on biomass accumulation or allocation, leaf delta(13)C values, or leaf or root NRA in response to NO(2) exposure. Foliar NO(2 )uptake may contribute a significant proportion of N to plant metabolism under N-limited conditions, does not strongly influence growth at 40 ppb, and may be traced using foliar delta(15)N values.


Assuntos
Nicotiana/metabolismo , Dióxido de Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Solanum lycopersicum/metabolismo , Biomassa , Carbono/metabolismo , Relação Dose-Resposta a Droga , Solanum lycopersicum/efeitos dos fármacos , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Nitratos/farmacologia , Isótopos de Nitrogênio , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Especificidade da Espécie , Nicotiana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...