Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475353

RESUMO

Microcapsules are being used in textile substrates increasingly more frequently, availing a wide spectrum of possibilities that are relevant to future research trends. Biofunctional Textiles is a new field that should be carefully studied, especially when dealing with microencapsulated essential oils. In the final step, when the active principle is delivered, there are some possibilities to quantify and simulate its doses on the skin or in the environment. At that stage, there is a phenomenon that can help to better control the delivery and the reservoir effect of the textile substrate. Depending on the chemical characteristics of the molecule to be delivered, as well as the structure and chemical nature of the fabric where it has been applied, there is physicochemical retention exerted by fibers that strongly controls the final rate of principle active delivery to the external part of the textile substrate. The study of this type of effect in two different substrates (cotton and polyester) will be described here regarding two different essential oils microencapsulated and applied to the substrates using padding technology. The experimental results of the final drug delivery demonstrate this reservoir effect in both essential oils.

2.
Polymers (Basel) ; 15(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36850201

RESUMO

Surface treatments for textile substrates have received significant attention from researchers around the world. Ozone and plasma treatments trigger a series of surface alterations in textile substrates that can improve the anchoring of other molecules or particles on these substrates. This work aims to evaluate the effect of ozone and plasma treatments on the impregnation of polymeric microcapsules containing lavender oil in polyester fabrics (PES). Microcapsules with walls of chitosan and gum arabic were prepared by complex coacervation and impregnated in PES, plasma-treated PES, and ozone-treated PES by padding. The microcapsules were characterized for their size and morphology and the surface-treated PES was evaluated by FTIR, TGA, SEM, and lavender release. The microcapsules were spherical in shape, with smooth surfaces. The FTIR analyses of the textile substrates with microcapsules showed bands referring to the polymers of the microcapsules, but not to the lavender; this was most likely because the smooth surface of the outer wall did not retain the lavender. The mass loss and the degradation temperatures measured by TGA were similar for all the ozone-treated and plasma-treated polyester samples. In the SEM images, spherical microcapsules and the impregnation of the microcapsules of larger sizes were perceived. Through the lavender release, it was observed that the plasma and ozone treatments interfered both with the amount of lavender delivered and with the control of the delivery.

3.
Bioprocess Biosyst Eng ; 45(8): 1391-1405, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35869292

RESUMO

Enzymatic scouring of cotton has established itself (slowly) as a green alternative to alkaline scouring in the textile industry, mostly due to more environmentally friendly processing at lower pH and temperatures and its less aggressive action on the cotton fibers. However, among other limitations, enzyme costs have contributed to impeding its wide acceptance and use. For the first time, in this study, the recycling of the bioscouring bath was evaluated, unlike most current bioscouring that is performed using fresh enzyme solution. Bioscouring of raw knitted cotton fabric was carried out for 30 min with a commercial pectinase (BioPrep® 3000L) at 55 °C and pH 8.5. About 89% of the recovered pectate lyase-containing scouring bath was completed with 11% of fresh enzyme solution and reused in a new bioscouring process under the same conditions. Up to ten reuse cycles were possible maintaining the level of pectin removal and without significant loss in quality of subsequent dyeing. A detailed analysis of the pretreated fabrics is presented. Reusing the scouring bath, reducing the intensive consumption of input materials (enzyme, water, and chemicals) and wastewater generation can be possible, making bioscouring a more attractive and sustainable technique. The process demonstrated is promising and its industrial application is feasible.


Assuntos
Polissacarídeo-Liases , Têxteis , Fibra de Algodão , Poligalacturonase
4.
Cellulose (Lond) ; 28(18): 11679-11700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720463

RESUMO

Cationization of cotton fabrics was performed by exhaustion procedure utilizing four different reagents provided with quaternary ammonium groups: poly diallyldimethylammonium chloride (PDDACl), poly acrylamide-co-diallyldimethylammonium chloride (PAcD), poly[bis(2-chloroethyl) ether-alt-1,3-bis[3-(dimethylamino)propyl]urea] quaternized (P42) and 3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CHPTAC). Pretreated samples were dyed using Reactive Red 195 dye. The cationic fabrics were analyzed by colorimetric and fastness properties, zeta potential, SEM, FTIR and an estimate of the bactericidal effect. Cationic cotton treated with PDDACl and CHPTAC showed a higher affinity for the reactive dye, with color strength (K/S) values varying from 41 to 48, against 32 for conventional dyeing. P42 presented competitive results with K/S of 27-28. The cationic dyeing considerably reduced the amount of effluent, especially for the CHPTAC samples, which requires a single washing bath for complete removal of unfixed dye. The PDDACl and P42 samples presented bactericidal activity. Supplementary Information: The online version contains supplementary material available at 10.1007/s10570-021-04260-4.

5.
Eng. sanit. ambient ; 16(3): 245-252, jul.-set. 2011. ilus, tab
Artigo em Português | LILACS | ID: lil-601962

RESUMO

A adsorção é uma das técnicas empregadas com sucesso para remoção efetiva da cor presente em efluentes têxteis. Com o objetivo de avaliar os diferentes parâmetros adsortivos, bem como determinar a eficiência de um adsorvente alternativo desenvolvido a partir de lodo residual têxtil na remoção de corantes, foram determinadas curvas de cinética de adsorção e isotermas. Por meio dos dados cinéticos e de equilíbrio obtidos, verificou-se que a 25ºC a adsorção foi favorável para todos os corantes, sendo esta a melhor condição para os corantes RO16 e RR2 na ausência de sais. Para o corante RR141, a adição de NaCl aumentou a capacidade de adsorção do adsorvente no equilíbrio e a adição de Na2SO4 favoreceu a adsorção para o corante RO16, ao contrário do que se observou para os outros dois corantes. A quantidade máxima de corante adsorvida por unidade de massa de adsorvente (q max) nas melhores condições adsortivas para os corantes RO16, RR2 e RR141 foi de 81,30, 53,48 e 78,74 mg.g-1, respectivamente.


The adsorption is one of the techniques that have been successfully used for effective removal of the dyes present in textile effluents. With the objective to evaluate the different adsorptive parameters, as well as determining the efficiency of one alternative adsorbent in the removal of dyes, kinetics and equilibrium data of adsorption were determined. By the kinetic data and of equilibrium, it was verified that the adsorption was favorable for all the dyes in 25ºC, being the best condition for the dye RO16 and RR2 in the total absence of salt. For the dye RR141, the addition of NaCl increased the adsorption capacity of adsorbent in the equilibrium and the addition of Na2SO4 favored the adsorption for the dye RO16, in contrast to what was observed for the two other dyes. The maximum quantity of dye adsorbed per unit mass of adsorbent (q max) in the best adsorptive conditions for the dyes RO16, RR2 and RR141 was of 81.30, 53.48 and 78.74 mg.g-1 respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...