Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(1): e0279894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36603015

RESUMO

The COVID-19 pandemic has highlighted a need for better understanding of countries' vulnerability and resilience to not only pandemics but also disasters, climate change, and other systemic shocks. A comprehensive characterization of vulnerability can inform efforts to improve infrastructure and guide disaster response in the future. In this paper, we propose a data-driven framework for studying countries' vulnerability and resilience to incident disasters across multiple dimensions of society. To illustrate this methodology, we leverage the rich data landscape surrounding the COVID-19 pandemic to characterize observed resilience for several countries (USA, Brazil, India, Sweden, New Zealand, and Israel) as measured by pandemic impacts across a variety of social, economic, and political domains. We also assess how observed responses and outcomes (i.e., resilience) of the COVID-19 pandemic are associated with pre-pandemic characteristics or vulnerabilities, including (1) prior risk for adverse pandemic outcomes due to population density and age and (2) the systems in place prior to the pandemic that may impact the ability to respond to the crisis, including health infrastructure and economic capacity. Our work demonstrates the importance of viewing vulnerability and resilience in a multi-dimensional way, where a country's resources and outcomes related to vulnerability and resilience can differ dramatically across economic, political, and social domains. This work also highlights key gaps in our current understanding about vulnerability and resilience and a need for data-driven, context-specific assessments of disaster vulnerability in the future.


Assuntos
COVID-19 , Desastres , Humanos , COVID-19/epidemiologia , Pandemias , Brasil/epidemiologia , Índia
3.
Front Oncol ; 12: 904813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875117

RESUMO

Homologous recombination is a crucial pathway that is specialized in repairing double-strand breaks; thus, alterations in genes of this pathway may lead to loss of genomic stability and cell growth suppression. Pesticide exposure potentially increases cancer risk through several mechanisms, such as the genotoxicity caused by chronic exposure, leading to gene alteration. To analyze this hypothesis, we investigated if breast cancer patients exposed to pesticides present a different mutational pattern in genes related to homologous recombination (BRCA1, BRCA2, PALB2, and RAD51D) and damage-response (TP53) concerning unexposed patients. We performed multiplex PCR-based assays and next-generation sequencing (NGS) of all coding regions and flanking splicing sites of BRCA1, BRCA2, PALB2, TP53, and RAD51D in 158 unpaired tumor samples from breast cancer patients on MiSeq (Illumina) platform. We found that exposed patients had tumors with more pathogenic and likely pathogenic variants than unexposed patients (p = 0.017). In general, tumors that harbored a pathogenic or likely pathogenic variant had a higher mutational burden (p < 0.001). We also observed that breast cancer patients exposed to pesticides had a higher mutational burden when diagnosed before 50 years old (p = 0.00978) and/or when carrying BRCA1 (p = 0.0138), BRCA2 (p = 0.0366), and/or PALB2 (p = 0.00058) variants, a result not found in the unexposed group. Our results show that pesticide exposure impacts the tumor mutational landscape and could be associated with the carcinogenesis process, therapy response, and disease progression. Further studies should increase the observation period in exposed patients to better evaluate the impact of these findings.

4.
Parasit Vectors ; 14(1): 547, 2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34688314

RESUMO

BACKGROUND: Estimates of the geographical distribution of Culex mosquitoes in the Americas have been limited to state and provincial levels in the United States and Canada and based on data from the 1980s. Since these estimates were made, there have been many more documented observations of mosquitoes and new methods have been developed for species distribution modeling. Moreover, mosquito distributions are affected by environmental conditions, which have changed since the 1980s. This calls for updated estimates of these distributions to understand the risk of emerging and re-emerging mosquito-borne diseases. METHODS: We used contemporary mosquito data, environmental drivers, and a machine learning ecological niche model to create updated estimates of the geographical range of seven predominant Culex species across North America and South America: Culex erraticus, Culex nigripalpus, Culex pipiens, Culex quinquefasciatus, Culex restuans, Culex salinarius, and Culex tarsalis. RESULTS: We found that Culex mosquito species differ in their geographical range. Each Culex species is sensitive to both natural and human-influenced environmental factors, especially climate and land cover type. Some prefer urban environments instead of rural ones, and some are limited to tropical or humid areas. Many are found throughout the Central Plains of the USA. CONCLUSIONS: Our updated contemporary Culex distribution maps may be used to assess mosquito-borne disease risk. It is critical to understand the current geographical distributions of these important disease vectors and the key environmental predictors structuring their distributions not only to assess current risk, but also to understand how they will respond to climate change. Since the environmental predictors structuring the geographical distribution of mosquito species varied, we hypothesize that each species may have a different response to climate change.


Assuntos
Distribuição Animal , Culex/fisiologia , Mosquitos Vetores/fisiologia , América , Animais , Mudança Climática , Culex/classificação , Culex/parasitologia , Culex/virologia , Humanos , Aprendizado de Máquina , Mosquitos Vetores/classificação , Mosquitos Vetores/parasitologia , Mosquitos Vetores/virologia , América do Norte , América do Sul
5.
Health Policy Open ; 2: 100052, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34514375

RESUMO

The coronavirus disease (COVID-19) pandemic has highlighted systemic inequities in the United States and resulted in a larger burden of negative social outcomes for marginalized communities. New Mexico, a state in the southwestern US, has a unique population with a large racial minority population and a high rate of poverty that may make communities more vulnerable to negative social outcomes from COVID-19. To identify which communities may be at the highest relative risk, we created a county-level vulnerability index. After the first COVID-19 case was reported in New Mexico on March 11, 2020, we fit a generalized propensity score model that incorporates sociodemographic factors to predict county-level viral exposure and thus, the generic risk to negative social outcomes such as unemployment or mental health impacts. We used four static sociodemographic covariates important for the state of New Mexico-population, poverty, household size, and minority population-and weekly cumulative case counts to iteratively run our model each week and normalize the exposure score to create a time-varying vulnerability index. We found the relative vulnerability between counties varied in the first eight weeks from the initial COVID-19 case before stabilizing. This framework for creating a location-specific vulnerability index in response to an ongoing disaster may be used as a quick, deployable metric to inform health policy decisions such as allocating state resources to the county level.

6.
PLoS Negl Trop Dis ; 15(5): e0009392, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34019536

RESUMO

Dengue virus remains a significant public health challenge in Brazil, and seasonal preparation efforts are hindered by variable intra- and interseasonal dynamics. Here, we present a framework for characterizing weekly dengue activity at the Brazilian mesoregion level from 2010-2016 as time series properties that are relevant to forecasting efforts, focusing on outbreak shape, seasonal timing, and pairwise correlations in magnitude and onset. In addition, we use a combination of 18 satellite remote sensing imagery, weather, clinical, mobility, and census data streams and regression methods to identify a parsimonious set of covariates that explain each time series property. The models explained 54% of the variation in outbreak shape, 38% of seasonal onset, 34% of pairwise correlation in outbreak timing, and 11% of pairwise correlation in outbreak magnitude. Regions that have experienced longer periods of drought sensitivity, as captured by the "normalized burn ratio," experienced less intense outbreaks, while regions with regular fluctuations in relative humidity had less regular seasonal outbreaks. Both the pairwise correlations in outbreak timing and outbreak trend between mesoresgions were best predicted by distance. Our analysis also revealed the presence of distinct geographic clusters where dengue properties tend to be spatially correlated. Forecasting models aimed at predicting the dynamics of dengue activity need to identify the most salient variables capable of contributing to accurate predictions. Our findings show that successful models may need to leverage distinct variables in different locations and be catered to a specific task, such as predicting outbreak magnitude or timing characteristics, to be useful. This advocates in favor of "adaptive models" rather than "one-size-fits-all" models. The results of this study can be applied to improving spatial hierarchical or target-focused forecasting models of dengue activity across Brazil.


Assuntos
Dengue/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Previsões/métodos , Brasil/epidemiologia , Humanos , Modelos Estatísticos , Estações do Ano , Tempo (Meteorologia)
7.
JMIR Public Health Surveill ; 7(6): e27888, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34003763

RESUMO

BACKGROUND: Prior to the COVID-19 pandemic, US hospitals relied on static projections of future trends for long-term planning and were only beginning to consider forecasting methods for short-term planning of staffing and other resources. With the overwhelming burden imposed by COVID-19 on the health care system, an emergent need exists to accurately forecast hospitalization needs within an actionable timeframe. OBJECTIVE: Our goal was to leverage an existing COVID-19 case and death forecasting tool to generate the expected number of concurrent hospitalizations, occupied intensive care unit (ICU) beds, and in-use ventilators 1 day to 4 weeks in the future for New Mexico and each of its five health regions. METHODS: We developed a probabilistic model that took as input the number of new COVID-19 cases for New Mexico from Los Alamos National Laboratory's COVID-19 Forecasts Using Fast Evaluations and Estimation tool, and we used the model to estimate the number of new daily hospital admissions 4 weeks into the future based on current statewide hospitalization rates. The model estimated the number of new admissions that would require an ICU bed or use of a ventilator and then projected the individual lengths of hospital stays based on the resource need. By tracking the lengths of stay through time, we captured the projected simultaneous need for inpatient beds, ICU beds, and ventilators. We used a postprocessing method to adjust the forecasts based on the differences between prior forecasts and the subsequent observed data. Thus, we ensured that our forecasts could reflect a dynamically changing situation on the ground. RESULTS: Forecasts made between September 1 and December 9, 2020, showed variable accuracy across time, health care resource needs, and forecast horizon. Forecasts made in October, when new COVID-19 cases were steadily increasing, had an average accuracy error of 20.0%, while the error in forecasts made in September, a month with low COVID-19 activity, was 39.7%. Across health care use categories, state-level forecasts were more accurate than those at the regional level. Although the accuracy declined as the forecast was projected further into the future, the stated uncertainty of the prediction improved. Forecasts were within 5% of their stated uncertainty at the 50% and 90% prediction intervals at the 3- to 4-week forecast horizon for state-level inpatient and ICU needs. However, uncertainty intervals were too narrow for forecasts of state-level ventilator need and all regional health care resource needs. CONCLUSIONS: Real-time forecasting of the burden imposed by a spreading infectious disease is a crucial component of decision support during a public health emergency. Our proposed methodology demonstrated utility in providing near-term forecasts, particularly at the state level. This tool can aid other stakeholders as they face COVID-19 population impacts now and in the future.


Assuntos
COVID-19/terapia , Atenção à Saúde , Planejamento em Saúde/métodos , Hospitalização , Unidades de Terapia Intensiva , Pandemias , Respiração Artificial , COVID-19/mortalidade , Equipamentos e Provisões , Previsões , Hospitais , Humanos , Tempo de Internação , Modelos Estatísticos , New Mexico , Saúde Pública , SARS-CoV-2 , Capacidade de Resposta ante Emergências
8.
BMC Infect Dis ; 20(1): 252, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32228508

RESUMO

BACKGROUND: Dengue fever is a mosquito-borne infection transmitted by Aedes aegypti and mainly found in tropical and subtropical regions worldwide. Since its re-introduction in 1986, Brazil has become a hotspot for dengue and has experienced yearly epidemics. As a notifiable infectious disease, Brazil uses a passive epidemiological surveillance system to collect and report cases; however, dengue burden is underestimated. Thus, Internet data streams may complement surveillance activities by providing real-time information in the face of reporting lags. METHODS: We analyzed 19 terms related to dengue using Google Health Trends (GHT), a free-Internet data-source, and compared it with weekly dengue incidence between 2011 to 2016. We correlated GHT data with dengue incidence at the national and state-level for Brazil while using the adjusted R squared statistic as primary outcome measure (0/1). We used survey data on Internet access and variables from the official census of 2010 to identify where GHT could be useful in tracking dengue dynamics. Finally, we used a standardized volatility index on dengue incidence and developed models with different variables with the same objective. RESULTS: From the 19 terms explored with GHT, only seven were able to consistently track dengue. From the 27 states, only 12 reported an adjusted R squared higher than 0.8; these states were distributed mainly in the Northeast, Southeast, and South of Brazil. The usefulness of GHT was explained by the logarithm of the number of Internet users in the last 3 months, the total population per state, and the standardized volatility index. CONCLUSIONS: The potential contribution of GHT in complementing traditional established surveillance strategies should be analyzed in the context of geographical resolutions smaller than countries. For Brazil, GHT implementation should be analyzed in a case-by-case basis. State variables including total population, Internet usage in the last 3 months, and the standardized volatility index could serve as indicators determining when GHT could complement dengue state level surveillance in other countries.


Assuntos
Dengue/epidemiologia , Ferramenta de Busca/tendências , Aedes , Animais , Brasil/epidemiologia , Epidemias , Humanos , Incidência
9.
Epidemics ; 21: 63-79, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28803069

RESUMO

As South and Central American countries prepare for increased birth defects from Zika virus outbreaks and plan for mitigation strategies to minimize ongoing and future outbreaks, understanding important characteristics of Zika outbreaks and how they vary across regions is a challenging and important problem. We developed a mathematical model for the 2015/2016 Zika virus outbreak dynamics in Colombia, El Salvador, and Suriname. We fit the model to publicly available data provided by the Pan American Health Organization, using Approximate Bayesian Computation to estimate parameter distributions and provide uncertainty quantification. The model indicated that a country-level analysis was not appropriate for Colombia. We then estimated the basic reproduction number to range between 4 and 6 for El Salvador and Suriname with a median of 4.3 and 5.3, respectively. We estimated the reporting rate to be around 16% in El Salvador and 18% in Suriname with estimated total outbreak sizes of 73,395 and 21,647 people, respectively. The uncertainty in parameter estimates highlights a need for research and data collection that will better constrain parameter ranges.


Assuntos
Número Básico de Reprodução , Epidemias , Infecção por Zika virus/epidemiologia , Teorema de Bayes , América Central/epidemiologia , Humanos , Modelos Teóricos , América do Sul/epidemiologia , Incerteza , Zika virus , Infecção por Zika virus/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA