Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Mol Mutagen ; 64(7): 393-400, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37431273

RESUMO

The aim of this study was to compare the kinetics of the in vivo action of equimolar doses of methyl gallate (MG) and epigallocatechin gallate (EGCG) on their capacity to induce DNA damage and to protect against DNA damage induced by 60 Co gamma rays. DNA-damaged cells were determined by single-cell gel electrophoresis (comets) in murine peripheral blood leukocytes. The maximum radioprotective effects of MG and EGCG (approximately 70%) occurred at 15 min after administration when their effect was determined 2 min following irradiation. MG and EGCG have similar radioprotective indexes, which due to their fast response indicate that they are involved in free radical scavenging. Due to the similar radioprotective activities of MG and EGCG, the in vivo radioprotective effects of these agents do not seem to be dependent on the number of hydroxyl groups present in their structures but instead on the presence of the galloyl radical. EGCG induces an early, significant, and persistent increase in the number of DNA-damaged cells and a later and more important increase in the number of damaged cells, suggesting that it has two mechanisms by which it can induce DNA damage. MG at the same molar dose as EGCG caused a significant and persistent increase in DNA damaged cells but to a much lesser extent to that induce by EGCG, suggesting that the galloyl radical is not involved in the mechanism of DNA breaks induction.


Assuntos
Dano ao DNA , DNA , Animais , Camundongos , Cinética
2.
Open Forum Infect Dis ; 10(3): ofad075, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36998630

RESUMO

Background: A continuing nationwide vaccination campaign began in the Dominican Republic on February 16, 2021 to prevent severe consequences of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Estimates of vaccine effectiveness under real-world conditions are needed to support policy decision making and inform further vaccine selection. Methods: We conducted a test-negative case-control study to assess the real-world effectiveness of nationwide coronavirus disease 2019 (COVID-19) vaccination program using an inactivated vaccine (CoronaVac) on preventing symptomatic SARS-CoV-2 infections and hospitalizations from August to November 2021 in the Dominican Republic. Participants were recruited from 10 hospitals in 5 provinces to estimate the effectiveness of full immunization (≥14 days after receipt of the second dose) and partial immunization (otherwise with at least 1 dose ≥14 days after receipt of the first dose). Results: Of 1078 adult participants seeking medical care for COVID-19-related symptoms, 395 (36.6%) had positive polymerase chain reaction (PCR) tests for SARS-CoV-2; 142 (13.2%) were hospitalized during 15 days of follow up, including 91 (23%) among 395 PCR-positive and 51 (7.5%) among 683 PCR-negative participants. Full vaccination was associated with 31% lower odds of symptomatic infection (odds ratio [OR], 0.69; 95% confidence interval [CI], 0.52-0.93) and partial vaccination was associated with 49% lower odds (OR, 0.51; CI, 0.30-0.86). Among 395 PCR-positive participants, full vaccination reduced the odds of COVID-19-related hospitalization by 85% (OR, 0.15; 95% CI, 0.08-0.25) and partial vaccination reduced it by 75% (OR, 0.25; 95% CI, 0.08-0.80); full vaccination was associated with reduced use of assisted ventilation by 73% (OR, 0.27; 95% CI, 0.15-0.49). Conclusions: Given the ancestral and delta viral variants circulating during this study period, our results suggest that the inactivated COVID-19 vaccine offered moderate protection against symptomatic SARS-CoV-2 infections and high protection against COVID-19-related hospitalizations and assisted ventilation. This is reassuring given that, as of August 2022, an estimated 2.6 billion inactivated CoronaVac vaccine doses had been administered worldwide. This vaccine will become a basis for developing multivalent vaccine against the currently circulating omicron variant.

3.
Biochem Biophys Rep ; 31: 101296, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35707716

RESUMO

The aim of the present study was to investigate whether weekly exposure to gamma rays causes a persistent increase in the number of radioresistant leukocytes in mice in vivo. Using the comet assay, 1 Gy radiation exposure decreased the percentage of leukocytes with less than 5% DNA in the tail (<5% DNAT), and we propose that radioresistance induction might increase the number of cells with <5% DNAT after radiation exposure. We exposed mice to 1 Gy gamma rays weekly for four weeks or 2 Gy per week for nine weeks. We observed a significant increase in cells with <5% DNAT after the third week and up to nine weeks of exposure. We exposed animals to gradually increasing radiation doses and finally challenged the lymphocytes with 1 Gy radiation both in vivo and in vitro. We observed increased radioresistance in vitro, providing evidence that a cellular process is involved. However, more radioresistance was observed in vivo than in vitro, suggesting a physiological effect. Cells challenged in vitro were maintained on ice during and after exposure, which likely caused a reduction in DNA repair. Radioresistance induction likely arose from mutation selection in stem cells because leukocytes are unable to proliferate in peripheral blood.

4.
Rev. argent. salud publica ; 13(Suplemento COVID-19): 1-7, 2021.
Artigo em Espanhol | LILACS, ARGMSAL, BINACIS | ID: biblio-1151310

RESUMO

INTRODUCCIÓN: La región sudeste del Gran Buenos Aires (GBA) reformuló el sistema público de salud por la pandemia de COVID19. Entre las medidas que se tomaron, está la ampliación del número de camas mediante la construcción y puesta en marcha de tres hospitales. OBJETIVO: Evaluar el impacto de la ampliación del número de camas en los resultados de internación de los pacientes asistidos por los efectores públicos de salud durante el período de estudio (8 de abril de 2020 al 11 de septiembre de 2020). MÉTODOS: Estudio descriptivo a partir de información registrada en el Tablero COVID-19, software de gestión desarrollado por el equipo del Instituto del Cálculo de la Universidad de Buenos Aires, en el que se obtienen datos de cada paciente internado en la red de efectores de salud; se evalúan los resultados del efecto del aumento de la capacidad instalada. RESULTADOS: Se registraron 2 306 pacientes internados, de los cuales 266 (11,54%) requirieron internación en unidad de cuidados intensivos (UCO), 1 786 (77,4%) en cuidados intermedios y 254 (11%) pacientes en sala general. La media de edad fue de 50,63 y los pacientes de sexo masculino representaron el 55,5% del total. Se produjeron 253 muertes (10,97%), de las cuales el 64% fueron hombres. El 58,3% del total tenían enfermedades preexistentes, estos tienen un riesgo 90% más alto que quienes no las tenían. El promedio total de ocupación de camas en UCI fue del 40,7%, mientras que el de ocupación en cuidados intermedios fue de 61,5%. Sin los hospitales nuevos, 169 pacientes (9,46%) no hubieran tenido camas en cuidados intermedios y 31 pacientes (11,6%) no hubieran tenido cama en la UCI. DISCUSIÓN: El sistema de salud de la región sudeste del GBA se preparó de manera adecuada gracias a la ampliación del número de camas de internación.


Assuntos
Mortalidade , Infecções por Coronavirus , Sistemas Nacionais de Saúde
5.
Environ Mol Mutagen ; 60(6): 534-545, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30851126

RESUMO

The aim of the present study was to characterize the in vivo radiosensitizing effect of a very low dose of bromodeoxyuridine (BrdU) in mice exposed to low-dose radiation by establishing the following: (1) the radiosensitizing effect during DNA synthesis using single-cell gel electrophoresis (SCGE) in murine bone marrow cells, and (2) the number and timing of the mechanisms of genotoxicity and cytotoxicity, as well as the correlation of both end points, using flow cytometry analysis of the kinetics of micronucleus induction in reticulocytes. Groups of mice received intraperitoneal injections of 0.125 mg/g of BrdU 24 h prior to irradiation with 0.5 Gy of 60 Co gamma rays. DNA breaks measured using SCGE were determined at 30 min after exposure to radiation. The kinetics of micronucleated reticulocyte (MN-RET) induction was determined every 8 h after irradiation up to 72 h. The results from both experimental models indicated that low-level BrdU incorporation into DNA increased the sensitivity to 0.5 Gy of radiation, particularly in the S phase. The formation of micronuclei by gamma rays was produced at three different times using two main mechanisms. In the BrdU-substituted cells, the second mechanism was associated with a high cytotoxic effect that was absent in the irradiated BrdU-unsubstituted cells. The third mechanism, in which micronucleus formation was increased in irradiated substituted cells compared with the irradiated nonsubstituted control cells, was also related to an increase in cytotoxicity. Environ. Mol. Mutagen. 60:534-545, 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Bromodesoxiuridina/administração & dosagem , Raios gama/efeitos adversos , Radiossensibilizantes/administração & dosagem , Animais , Células da Medula Óssea/efeitos dos fármacos , DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta à Radiação , Citometria de Fluxo/métodos , Cinética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Testes para Micronúcleos/métodos , Reticulócitos/efeitos dos fármacos
6.
Cancer Chemother Pharmacol ; 79(5): 843-853, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28324147

RESUMO

PURPOSE: This study analyzed the kinetics of in vivo micronucleus induction in normoblasts by determining the kinetics of difluorodeoxycytidine (dFdC)-induced micronucleated polychromatic erythrocytes (MN-PCEs) in the peripheral blood of mice. The kinetic indexes of MN-PCE induction of dFdC were correlated with the previously reported mechanisms DNA damage induction by this compound. In general, this study aimed to establish an in vivo approach for discerning the processes underlying micronucleus induction by antineoplastic agents or mutagens in general. METHODS: The frequencies of PCEs and MN-PCEs in the peripheral blood of mice were determined prior to treatment and after treatment using dFdC at doses of 95, 190, or 380 µmol/kg at 8 h intervals throughout a 72 h post-treatment. RESULTS: The area beneath the curve (ABC) for MN-PCE induction as a function of time, which is an index of the total effect, indicated that the dose response was directly proportional and that the effect of dFdC on micronucleus induction was reduced compared with that of aneuploidogens and monofunctional and bifunctional alkylating agents but increased compared with that of promutagens, which is consistent with our previous results. The ABC showed a single peak with a small broadness index, which indicates that dFdC has a single mechanism or concomitant mechanisms for inducing DNA breaks. The time of the relative maximal induction (T rmi) indicated that dFdC requires more time to achieve MN-PCE induction compared with aneugens and monofunctional and bifunctional alkylating agents, although it requires a similar time to achieve MN-PCE induction as azacytidine, which is consistent with evidence showing that both agents must be incorporated into DNA for their action to be realized. The timing of maximal cytotoxicity observed with the lowest dFdC dose was correlated with the timing of the main genotoxic effect. However, early and late cytotoxic effects were detected, and these effects were independent of the genotoxic response. CONCLUSIONS: A correlation analysis indicated that dFdC appears to induce MN-PCEs through only one mechanism or mechanisms that occur concomitantly, which could be explained by the previously reported concurrent inhibitory effects of dFdC on DNA polymerase alpha, polymerase epsilon, and/or topoisomerase. The timing of maximal cytotoxicity was correlated with the timing of maximal genotoxicity; however, an early cytotoxic effect that appeared to occur prior to the incorporation of dFdC into DNA was likely related to a previously reported inhibitory effect of dFdC on thymidylate synthase and/or ribonucleotide reductase.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/toxicidade , Desoxicitidina/análogos & derivados , Eritroblastos/efeitos dos fármacos , Mutagênicos/toxicidade , Animais , Azacitidina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Desoxicitidina/farmacologia , Desoxicitidina/toxicidade , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Cinética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes para Micronúcleos , Gencitabina
7.
Arch Med Res ; 37(3): 316-21, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16513478

RESUMO

BACKGROUND: Busulfan (BUS) is a highly toxic antineoplastic bifunctional-alkylating agent and has a narrow therapeutic window. Our previous study revealed a narrow dose-range of BUS, which causes a sudden dose-dependent transition from early- to late-expressing micronucleus induction and from a non-cytotoxic to a cytotoxic effect. In the present study, the kinetics of DNA-damaged cell induction by BUS and its dose-effect relationship were established. METHODS: This was achieved by using the kinetics of DNA-damaged cell induction, determined by the comet assay in murine peripheral blood leukocytes of mice, after the intraperitoneal exposure to 16, 30, 45, 60 or 80 micromol/kg of BUS. RESULTS: Doses of 15 or 30 micromol/kg of BUS were able to increase DNA-damaged cell frequency, but doses of 45 micromol/kg body weight or higher caused a sudden drop in this frequency. CONCLUSIONS: This suggests that higher doses cause lesions that inhibit the expression of damage as comets, i.e., DNA-protein or interstrand crosslinks. The latter could be explained by sudden monoadduct-to-crosslink transformation due to a DNA conformational change induced by monoadduct accumulation that facilitates crosslink formation. This narrow dose-dependent transition could contribute to the narrow therapeutic window of BUS.


Assuntos
Bussulfano/farmacocinética , Bussulfano/toxicidade , Dano ao DNA/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Bussulfano/administração & dosagem , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Cinética , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
8.
Mutat Res ; 565(1): 79-87, 2004 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-15576241

RESUMO

The aim of the present study was to make inferences about the cytotoxic and genotoxic action of the antineoplastic aneuploidogens, vinblastine and vincristine, by analyzing the kinetics of MN-PCE induction in mice in vivo. The kinetics of MN-PCE induction was assessed by taking blood samples from the tail, before the single i.p. injection of different doses of vinblastine or vincristine and every 8h after that. The analysis was done in groups consisting of three or four animals. The results indicate that both agents have similar kinetics of MN-PCE induction which differs from the kinetics previously obtained for colchicine in the following aspects: (i) vinblastine and vincristine cause a longer delay after exposure, (ii) they produce a higher maximal velocity of induction, and (iii) higher doses give rise to more than one peak in the curve of MN-PCE frequency versus time. The results of the present study indicate that the different mechanisms of action of vinca alkaloids and colchicine are reflected in their kinetics of MN-PCE induction, and that such mechanisms could also explain the differences in their efficiency. Vinca alkaloids seem to block the cell division immediately, but the cell appears to be capable of reverting the blockage during the period of time corresponding to the first division. Moreover, evidence was obtained indicating that high doses could induce a long lasting aneuploidogen effect, probably related to the accumulation of vinca alkaloids that are either free or associated to tubulin.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Eritrócitos , Micronúcleos com Defeito Cromossômico , Vimblastina/farmacologia , Vincristina/farmacologia , Animais , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/fisiologia , Camundongos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA