Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasitology ; 147(1): 96-107, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31452483

RESUMO

Understanding factors that influence the spatial and temporal distributions of blood parasites is important to help predict how host species and their parasites may respond to global change. Factors that may influence parasite distributions are land cover and host dispersal patterns, which may result in exposure of a host to novel parasites, or escape from parasites of their origin. We screened golden-winged warblers from across the United States and Canada for blood parasites, and investigated whether land-use patterns or host dispersal affected the prevalence and composition of haemosporidian assemblages. Parasite prevalence varied strongly with study area, and areas with high agricultural cover had a significantly higher prevalence of Leucocytozoon and Parahaemoproteus parasites. Lineages of Parahaemoproteus and Leucocytozoon were genetically differentiated among study areas, and prevalence and composition of parasite assemblages indicated an increase in parasite prevalence and accumulation of unique parasite lineages from the southeast to the northwest. This matches the historical range expansion and natal dispersal patterns of golden-winged warblers, and suggests that golden-winged warblers may have been sensitive to novel parasites as they dispersed. The high prevalence and diversity of parasite lineages in the north-west extent of their breeding range (Manitoba) indicates that this population may face unique pressures.


Assuntos
Distribuição Animal , Biodiversidade , Doenças das Aves/parasitologia , Animais , Canadá , Haemosporida , Interações Hospedeiro-Parasita , Passeriformes/parasitologia , Estados Unidos
2.
Proc Natl Acad Sci U S A ; 115(14): E3192-E3200, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29483273

RESUMO

Migratory species can experience limiting factors at different locations and during different periods of their annual cycle. In migratory birds, these factors may even occur in different hemispheres. Therefore, identifying the distribution of populations throughout their annual cycle (i.e., migratory connectivity) can reveal the complex ecological and evolutionary relationships that link species and ecosystems across the globe and illuminate where and how limiting factors influence population trends. A growing body of literature continues to identify species that exhibit weak connectivity wherein individuals from distinct breeding areas co-occur during the nonbreeding period. A detailed account of a broadly distributed species exhibiting strong migratory connectivity in which nonbreeding isolation of populations is associated with differential population trends remains undescribed. Here, we present a range-wide assessment of the nonbreeding distribution and migratory connectivity of two broadly dispersed Nearctic-Neotropical migratory songbirds. We used geolocators to track the movements of 70 Vermivora warblers from sites spanning their breeding distribution in eastern North America and identified links between breeding populations and nonbreeding areas. Unlike blue-winged warblers (Vermivora cyanoptera), breeding populations of golden-winged warblers (Vermivora chrysoptera) exhibited strong migratory connectivity, which was associated with historical trends in breeding populations: stable for populations that winter in Central America and declining for those that winter in northern South America.


Assuntos
Distribuição Animal , Migração Animal , Cruzamento , Dinâmica Populacional , Aves Canoras/fisiologia , Animais , Ecossistema , Masculino , Estações do Ano
3.
Curr Biol ; 26(17): 2313-8, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27546575

RESUMO

When related taxa hybridize extensively, their genomes may become increasingly homogenized over time. This mixing via hybridization creates conservation challenges when it reduces genetic or phenotypic diversity and when it endangers previously distinct species via genetic swamping [1]. However, hybridization also facilitates admixture mapping of traits that distinguish each species and the associated genes that maintain distinctiveness despite ongoing gene flow [2]. We address these dual aspects of hybridization in the golden-winged/blue-winged warbler complex, two phenotypically divergent warblers that are indistinguishable using traditional molecular markers and that draw substantial conservation attention [3-5]. Whole-genome comparisons show that differentiation is extremely low: only six small genomic regions exhibit strong differences. Four of these divergence peaks occur in proximity to genes known to be involved in feather development or pigmentation: agouti signaling protein (ASIP), follistatin (FST), ecodysplasin (EDA), wingless-related integration site (Wnt), and beta-carotene oxygenase 2 (BCO2). Throat coloration-the most striking plumage difference between these warblers-is perfectly associated with the promoter region of agouti, and genotypes at this locus obey simple Mendelian recessive inheritance of the black-throated phenotype characteristic of golden-winged warblers. The more general pattern of genomic similarity between these warblers likely results from a protracted period of hybridization, contradicting the broadly accepted hypothesis that admixture results from solely anthropogenic habitat change in the past two centuries [4]. Considered in concert, these results are relevant to both the genetic architecture of avian feather pigmentation and the evolutionary history and conservation challenges associated with these declining songbirds.


Assuntos
Proteínas Aviárias/genética , Genoma , Hibridização Genética , Pigmentação , Polimorfismo de Nucleotídeo Único , Aves Canoras/genética , Animais , Proteínas Aviárias/metabolismo , Evolução Biológica , Conservação dos Recursos Naturais , Plumas/fisiologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...