Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biologicals ; 42(2): 128-32, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24373974

RESUMO

A determination of biosimilarity is based on a thorough characterization and comparison of the quality profiles of a similar biotherapeutic product and its reference biotherapeutic product. Although the general principles on the role of the quality assessment in a biosimilar evaluation are widely understood and agreed, detailed discussions have not been published yet. We try to bridge this gap by presenting a case study exercise based on fictional but realistic data to highlight key principles of an evaluation to determine the degree of similarity at the quality level. The case study comprises three examples for biosimilar monoclonal antibody candidates. The first describes a highly similar quality profile whereas the second and third show greater differences to the reference biotherapeutic product. The aim is to discuss whether the presented examples can be qualified as similar and which additional studies may be helpful in enabling a final assessment. The case study exercise was performed at the WHO implementation workshop for the WHO guidelines on quality assessment of similar biotherapeutic products held in Xiamen, China, in May 2012. The goal was to illustrate the interpretation of the comparative results at the quality level, the role of the quality assessment in the entire biosimilarity exercise and its influence on the clinical evaluation. This paper reflects the outcome of the exercise and discussion from Xiamen.


Assuntos
Produtos Biológicos/normas , Controle de Qualidade
2.
Biologicals ; 40(4): 288-98, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22640893

RESUMO

Nimotuzumab (TheraCIM, CIMAher, h-R3, humanized anti-EGF-R antibody), monoclonal antibody (mAb) manufactured at the Center of Molecular Immunology (Havana, Cuba) is currently being tested in several clinical trials. Nimotuzumab has a single N-glycosylation site in the Fc-CH2 fragment but no N-glycosylation site in the Fab region. The current study reports the full characterization of the mAb N-glycosylation and the consistency observed in several production batches from a perfusion mode culturing system that lasted between 68 and 150 days. It confirms that the N-glycan structures of Nimotuzumab expressed in the NS0 murine myeloma cell line are of the murine type. They consist mainly of fucosylated G0, G1 and G2 oligosaccharides, which are normally found in the CH2 region of IgG. Other minor species found were high mannose and sialylated structures. A small portion of the glycans were sialylated (∼12%) and the only type of sialic acid detected was N-glycolyl-sialic acid, α2,6-linked to Gal. No Galα1-3Gal moieties were detected.


Assuntos
Anticorpos Monoclonais Humanizados/química , Oligossacarídeos/química , Configuração de Carboidratos , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
3.
J Biol Chem ; 279(24): 25112-21, 2004 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-15056662

RESUMO

The assembly of major histocompatibility complex (MHC) class I molecules with peptides in the endoplasmic reticulum (ER) is a critical step in the presentation of viral antigens to CD8+ T cells. This process is subject to quality control restrictions that prevent free class I heavy chains (HCs) and peptide-free HC-beta(2)-microglobulin (beta(2)m) dimers from exiting the ER. The lectin-like chaperone calreticulin associates with HC-beta(2)m heterodimers prior to peptide binding, but its precise role in regulating the subsequent events of peptide association and ER to Golgi transport remains undefined. In vitro analysis of the assembly process has been limited by the specificity of calreticulin for monoglucosylated N-linked glycans, which are transient biosynthetic intermediates. To address this problem, we developed a novel expression system using Saccharomyces cerevisiae glycosylation mutants to produce class I HC bearing N-linked oligosaccharides with the specific structure Glc(1)Man(9)GlcNAc(2). The monoglucosylated glycan proved to be both necessary and sufficient for in vitro binding of calreticulin to MHC class I molecules. Calreticulin bound as efficiently to peptide-loaded MHC class I complexes as it did to folding intermediates created in vitro, namely free class I HC and empty HC-beta(2)m heterodimers. Thus, calreticulin is unable to discriminate between native and non-native MHC class I conformations and therefore unlikely to play a role in the recognition and release of peptide-loaded complexes from the ER. Furthermore, the recombinant expression system developed in this study can be used to produce a broad range of calreticulin substrates to elucidate its general mechanism of activity in vitro.


Assuntos
Calreticulina/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Polissacarídeos/metabolismo , Calnexina/metabolismo , Glicosilação , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/isolamento & purificação , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...