Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 1279: 32-42, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23531000

RESUMO

During neuronal circuit formation, axons are guided to their targets by the help of axon guidance molecules, which are required for establishing functional circuits. A promising system to dissect the development and functionalities of neuronal circuitry is the spinal cord central pattern generator (CPG) for locomotion, which converts a tonic supraspinal drive to rhythmic and coordinated movements. Here we describe concepts arising from genetic studies of the locomotor network with a focus on the position and roles of commissural interneurons. In particular, this involves studies of several families of axon guidance molecules relevant for midline crossing, the Eph/ephrins and Netrin/DCC. Effects on developing commissural interneurons in mice with aberrant midline axon guidance capabilities suggest that, in addition to ventral populations, dorsal commissural interneurons also play a role in coordinating locomotor circuitry. Recent findings implicate the novel dI6 interneuron marker Dmrt3 in this role. Strikingly, mutations in Dmrt3 result in divergent gait patterns in both mice and horses.


Assuntos
Lateralidade Funcional/fisiologia , Interneurônios/fisiologia , Locomoção/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Medula Espinal/citologia , Animais , Lateralidade Funcional/genética , Humanos , Interneurônios/citologia , Interneurônios/metabolismo , Locomoção/genética , Camundongos , Modelos Biológicos , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Rede Nervosa/metabolismo , Medula Espinal/metabolismo , Medula Espinal/fisiologia
2.
J Neurotrauma ; 29(17): 2660-71, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22985250

RESUMO

We investigated the role of the axon guidance molecule EphA4 following traumatic brain injury (TBI) in mice. Neutralization of EphA4 improved motor function and axonal regeneration following experimental spinal cord injury (SCI). We hypothesized that genetic absence of EphA4 could improve functional and histological outcome following TBI. Using qRT-PCR in wild-type (WT) mice, we evaluated the EphA4 mRNA levels following controlled cortical impact (CCI) TBI or sham injury and found it to be downregulated in the hippocampus (p<0.05) but not the cortex ipsilateral to the injury at 24 h post-injury. Next, we evaluated the behavioral and histological outcome following CCI using WT mice and Emx1-Cre-driven conditional knockout (cKO) mice. In cKO mice, EphA4 was completely absent in the hippocampus and markedly reduced in the cortical regions from embryonic day 16, which was confirmed using Western blot analysis. EphA4 cKO mice had similar learning and memory abilities at 3 weeks post-TBI compared to WT controls, although brain-injured animals performed worse than sham-injured controls (p<0.05). EphA4 cKO mice performed similarly to WT mice in the rotarod and cylinder tests of motor function up to 29 days post-injury. TBI increased cortical and hippocampal astrocytosis (GFAP immunohistochemistry, p<0.05) and hippocampal sprouting (Timm stain, p<0.05) and induced a marked loss of hemispheric tissue (p<0.05). EphA4 cKO did not alter the histological outcome. Although our results may argue against a beneficial role for EphA4 in the recovery process following TBI, further studies including post-injury pharmacological neutralization of EphA4 are needed to define the role for EphA4 following TBI.


Assuntos
Lesões Encefálicas/patologia , Lesões Encefálicas/psicologia , Receptor EphA4/genética , Animais , Western Blotting , Peso Corporal/fisiologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Coxeadura Animal/etiologia , Coxeadura Animal/psicologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/fisiologia , Equilíbrio Postural/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Receptor EphA4/fisiologia , Caracteres Sexuais
3.
Nature ; 488(7413): 642-6, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22932389

RESUMO

Locomotion in mammals relies on a central pattern-generating circuitry of spinal interneurons established during development that coordinates limb movement. These networks produce left-right alternation of limbs as well as coordinated activation of flexor and extensor muscles. Here we show that a premature stop codon in the DMRT3 gene has a major effect on the pattern of locomotion in horses. The mutation is permissive for the ability to perform alternate gaits and has a favourable effect on harness racing performance. Examination of wild-type and Dmrt3-null mice demonstrates that Dmrt3 is expressed in the dI6 subdivision of spinal cord neurons, takes part in neuronal specification within this subdivision, and is critical for the normal development of a coordinated locomotor network controlling limb movements. Our discovery positions Dmrt3 in a pivotal role for configuring the spinal circuits controlling stride in vertebrates. The DMRT3 mutation has had a major effect on the diversification of the domestic horse, as the altered gait characteristics of a number of breeds apparently require this mutation.


Assuntos
Marcha/genética , Cavalos/genética , Cavalos/fisiologia , Mutação/genética , Medula Espinal/fisiologia , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Códon sem Sentido/genética , Marcha/fisiologia , Perfilação da Expressão Gênica , Frequência do Gene , Cavalos/classificação , Islândia , Camundongos , Dados de Sequência Molecular , Vias Neurais/fisiologia , Desempenho Psicomotor/fisiologia , Medula Espinal/citologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo
4.
Dev Biol ; 366(2): 279-89, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22521513

RESUMO

Coordinated limb rhythmic movements take place through organized signaling in local spinal cord neuronal networks. The establishment of these circuitries during development is dependent on the correct guidance of axons to their targets. It has previously been shown that the well-known axon guidance molecule netrin-1 is required for configuring the circuitry that provides left-right alternating coordination in fictive locomotion. The attraction of commissural axons to the midline in response to netrin-1 has been shown to involve the netrin-1 receptor DCC (deleted in Colorectal Cancer). However, the role of DCC for the establishment of CPG coordination has not yet been resolved. We show that mice carrying a null mutation of DCC displayed an uncoordinated left-right activity during fictive locomotion accompanied by a loss of interneuronal subpopulations originating from commissural progenitors. Thus, DCC plays a crucial role in the formation of spinal neuronal circuitry coordinating left-right activities. Together with the previously published results from netrin-1 deficient mice, the data presented in this study suggest a role for the most ventral originating V3 interneurons in synchronous activities over the midline. Further, it provides evidence that axon crossing in the spinal cord is more intricately controlled than in previously suggested models of DCC-netrin-1 interaction.


Assuntos
Axônios/fisiologia , Geradores de Padrão Central/fisiologia , Receptores de Superfície Celular/fisiologia , Medula Espinal/fisiologia , Animais , Axônios/ultraestrutura , Geradores de Padrão Central/citologia , Interneurônios/fisiologia , Interneurônios/ultraestrutura , Locomoção/fisiologia , Camundongos , Receptores de Netrina , Transdução de Sinais , Medula Espinal/embriologia
5.
J Comp Neurol ; 518(12): 2284-304, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20437528

RESUMO

Spinal cholinergic neurons are critical for motor function in both the autonomic and somatic nervous systems and are affected in spinal cord injury and in diseases such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy. Using two screening approaches and in situ hybridization, we identified 159 genes expressed in typical cholinergic patterns in the spinal cord. These include two general cholinergic neuron markers, one gene exclusively expressed in motor neurons, and nine genes expressed in unknown subtypes of somatic motor neurons. Further, we present evidence that chondrolectin (Chodl) is expressed by fast motor neurons and that estrogen-related receptor beta (ERRbeta) is a candidate marker for slow motor neurons. In addition, we suggest paired-like homeodomain transcription factor 2 (Pitx2) as a marker for cholinergic partition cells.


Assuntos
Proteínas de Homeodomínio/metabolismo , Lectinas Tipo C/metabolismo , Neurônios Motores/fisiologia , Receptores de Estrogênio/metabolismo , Medula Espinal/fisiologia , Fatores de Transcrição/metabolismo , Animais , Imunofluorescência , Proteínas de Homeodomínio/genética , Hibridização In Situ , Lectinas Tipo C/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas de Patch-Clamp , Receptores de Estrogênio/genética , Medula Espinal/citologia , Fatores de Transcrição/genética , Proteína Homeobox PITX2
6.
J Neurosci ; 29(50): 15642-9, 2009 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-20016078

RESUMO

Neuronal circuits in the spinal cord that produce the rhythmic and coordinated activities necessary for limb movements are referred to as locomotor central pattern generators (CPGs). The identities and preceding development of neurons essential for coordination between left and right limbs are not yet known. We show that the ventral floor plate chemoattractant Netrin-1 preferentially guides dorsally originating subtypes of commissural interneurons, the majority of which are inhibitory. In contrast, the excitatory and ventralmost V3 subtype of interneurons have a normal number of commissural fibers in Netrin-1 mutant mice, thus being entirely independent of Netrin-1-mediated attraction. This selective loss of commissural fibers in Netrin-1 mutant mice resulted in an abnormal circuitry manifested by a complete switch from alternating to synchronous fictive locomotor activity suggesting that the most ventral-originating excitatory commissural interneurons are an important component of a left-right synchrony circuit in the locomotor CPG. Thus, during development, Netrin-1 plays a critical role for the establishment of a functional balanced CPG.


Assuntos
Lateralidade Funcional/fisiologia , Interneurônios/fisiologia , Atividade Motora/fisiologia , Fatores de Crescimento Neural/fisiologia , Rede Nervosa/fisiologia , Medula Espinal/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Animais Recém-Nascidos , Interneurônios/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Rede Nervosa/citologia , Netrina-1 , Desempenho Psicomotor/fisiologia , Medula Espinal/citologia
7.
Neuron ; 45(1): 55-67, 2005 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-15629702

RESUMO

Studies have indicated that oligodendrocytes in the spinal cord originate from a ventral progenitor domain defined by expression of the oligodendrocyte-determining bHLH proteins Olig1 and Olig2. Here, we provide evidence that progenitors in the dorsal spinal cord and hindbrain also produce oligodendrocytes and that the specification of these cells may result from a dorsal evasion of BMP signaling over time. Moreover, we show that the generation of ventral oligodendrocytes in the spinal cord depends on Nkx6.1 and Nkx6.2 function, while these homeodomain proteins in the anterior hindbrain instead suppress oligodendrocyte specification. The opposing roles for Nkx6 proteins in the spinal cord and hindbrain, in turn, appear to reflect that oligodendrocytes are produced by distinct ventral progenitor domains at these axial levels. Based on these findings, we propose that oligodendrocytes derive from several distinct positional origins and that the activation of Olig1/2 at different positions is controlled by distinct genetic programs.


Assuntos
Diferenciação Celular/genética , Oligodendroglia/metabolismo , Rombencéfalo/embriologia , Medula Espinal/embriologia , Células-Tronco/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Biomarcadores , Proteína Morfogenética Óssea 7 , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Hedgehog , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Fator de Transcrição 2 de Oligodendrócitos , Oligodendroglia/citologia , Fator de Transcrição PAX7 , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Rombencéfalo/citologia , Rombencéfalo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Transativadores/metabolismo , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo
8.
Development ; 130(17): 4149-59, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12874134

RESUMO

The genetic program that underlies the generation of visceral motoneurons in the developing hindbrain remains poorly defined. We have examined the role of Nkx6 and Nkx2 class homeodomain proteins in this process, and provide evidence that these proteins mediate complementary roles in the specification of visceral motoneuron fate. The expression of Nkx2.2 in hindbrain progenitor cells is sufficient to mediate the activation of Phox2b, a homeodomain protein required for the generation of hindbrain visceral motoneurons. The redundant activities of Nkx6.1 and Nkx6.2, in turn, are dispensable for visceral motoneuron generation but are necessary to prevent these cells from adopting a parallel program of interneuron differentiation. The expression of Nkx6.1 and Nkx6.2 is further maintained in differentiating visceral motoneurons, and consistent with this the migration and axonal projection properties of visceral motoneurons are impaired in mice lacking Nkx6.1 and/or Nkx6.2 function. Our analysis provides insight also into the role of Nkx6 proteins in the generation of somatic motoneurons. Studies in the spinal cord have shown that Nkx6.1 and Nkx6.2 are required for the generation of somatic motoneurons, and that the loss of motoneurons at this level correlates with the extinguished expression of the motoneuron determinant Olig2. Unexpectedly, we find that the initial expression of Olig2 is left intact in the caudal hindbrain of Nkx6.1/Nkx6.2 compound mutants, and despite this, all somatic motoneurons are missing. These data argue against models in which Nkx6 proteins and Olig2 operate in a linear pathway, and instead indicate a parallel requirement for these proteins in the progression of somatic motoneuron differentiation. Thus, both visceral and somatic motoneuron differentiation appear to rely on the combined activity of cell intrinsic determinants, rather than on a single key determinant of neuronal cell fate.


Assuntos
Proteínas Aviárias , Proteínas de Homeodomínio/metabolismo , Neurônios Motores/metabolismo , Rombencéfalo/embriologia , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Imuno-Histoquímica , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Proteínas de Peixe-Zebra
9.
Genes Dev ; 17(6): 729-37, 2003 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-12651891

RESUMO

Neural progenitor cells often produce distinct types of neurons in a specific order, but the determinants that control the sequential generation of distinct neuronal subclasses in the vertebrate CNS remain poorly defined. We examined the sequential generation of visceral motor neurons and serotonergic neurons from a common pool of neural progenitors located in the ventral hindbrain. We found that the temporal specification of these neurons varies along the anterior-posterior axis of the hindbrain, and that the timing of their generation critically depends on the integrated activities of Nkx- and Hox-class homeodomain proteins. A primary function of these proteins is to coordinate the spatial and temporal activation of the homeodomain protein Phox2b, which in turn acts as a binary switch in the selection of motor neuron or serotonergic neuronal fate. These findings assign new roles for Nkx, Hox, and Phox2 proteins in the control of temporal neuronal fate determination, and link spatial and temporal patterning of CNS neuronal fates.


Assuntos
Encéfalo/embriologia , Sistema Nervoso Central/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Neurônios Motores/metabolismo , Fatores de Transcrição/genética , Animais , Bromodesoxiuridina/farmacologia , Linhagem da Célula , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Microscopia de Fluorescência , Modelos Biológicos , Mutação , Neurônios/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...