Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Plant Physiol ; 187(3): 1481-1500, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618065

RESUMO

Sorghum (Sorghum bicolor) is a model C4 crop made experimentally tractable by extensive genomic and genetic resources. Biomass sorghum is studied as a feedstock for biofuel and forage. Mechanistic modeling suggests that reducing stomatal conductance (gs) could improve sorghum intrinsic water use efficiency (iWUE) and biomass production. Phenotyping to discover genotype-to-phenotype associations remains a bottleneck in understanding the mechanistic basis for natural variation in gs and iWUE. This study addressed multiple methodological limitations. Optical tomography and a machine learning tool were combined to measure stomatal density (SD). This was combined with rapid measurements of leaf photosynthetic gas exchange and specific leaf area (SLA). These traits were the subject of genome-wide association study and transcriptome-wide association study across 869 field-grown biomass sorghum accessions. The ratio of intracellular to ambient CO2 was genetically correlated with SD, SLA, gs, and biomass production. Plasticity in SD and SLA was interrelated with each other and with productivity across wet and dry growing seasons. Moderate-to-high heritability of traits studied across the large mapping population validated associations between DNA sequence variation or RNA transcript abundance and trait variation. A total of 394 unique genes underpinning variation in WUE-related traits are described with higher confidence because they were identified in multiple independent tests. This list was enriched in genes whose Arabidopsis (Arabidopsis thaliana) putative orthologs have functions related to stomatal or leaf development and leaf gas exchange, as well as genes with nonsynonymous/missense variants. These advances in methodology and knowledge will facilitate improving C4 crop WUE.


Assuntos
Perfilação da Expressão Gênica , Técnicas Genéticas/instrumentação , Estudo de Associação Genômica Ampla , Aprendizado de Máquina , Sorghum/genética , Água/metabolismo , Características de História de Vida , Fenótipo , Sorghum/metabolismo
4.
Plant Physiol ; 187(4): 2544-2562, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618072

RESUMO

Stomata allow CO2 uptake by leaves for photosynthetic assimilation at the cost of water vapor loss to the atmosphere. The opening and closing of stomata in response to fluctuations in light intensity regulate CO2 and water fluxes and are essential for maintaining water-use efficiency (WUE). However, a little is known about the genetic basis for natural variation in stomatal movement, especially in C4 crops. This is partly because the stomatal response to a change in light intensity is difficult to measure at the scale required for association studies. Here, we used high-throughput thermal imaging to bypass the phenotyping bottleneck and assess 10 traits describing stomatal conductance (gs) before, during and after a stepwise decrease in light intensity for a diversity panel of 659 sorghum (Sorghum bicolor) accessions. Results from thermal imaging significantly correlated with photosynthetic gas exchange measurements. gs traits varied substantially across the population and were moderately heritable (h2 up to 0.72). An integrated genome-wide and transcriptome-wide association study identified candidate genes putatively driving variation in stomatal conductance traits. Of the 239 unique candidate genes identified with the greatest confidence, 77 were putative orthologs of Arabidopsis (Arabidopsis thaliana) genes related to functions implicated in WUE, including stomatal opening/closing (24 genes), stomatal/epidermal cell development (35 genes), leaf/vasculature development (12 genes), or chlorophyll metabolism/photosynthesis (8 genes). These findings demonstrate an approach to finding genotype-to-phenotype relationships for a challenging trait as well as candidate genes for further investigation of the genetic basis of WUE in a model C4 grass for bioenergy, food, and forage production.


Assuntos
Perfilação da Expressão Gênica/instrumentação , Genoma de Planta , Estudo de Associação Genômica Ampla/instrumentação , Fenótipo , Estômatos de Plantas/fisiologia , Sorghum/genética
5.
Nat Plants ; 7(1): 17-24, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33452486

RESUMO

Sorghum and maize share a close evolutionary history that can be explored through comparative genomics1,2. To perform a large-scale comparison of the genomic variation between these two species, we analysed ~13 million variants identified from whole-genome resequencing of 499 sorghum lines together with 25 million variants previously identified in 1,218 maize lines. Deleterious mutations in both species were prevalent in pericentromeric regions, enriched in non-syntenic genes and present at low allele frequencies. A comparison of deleterious burden between sorghum and maize revealed that sorghum, in contrast to maize, departed from the domestication-cost hypothesis that predicts a higher deleterious burden among domesticates compared with wild lines. Additionally, sorghum and maize population genetic summary statistics were used to predict a gene deleterious index with an accuracy greater than 0.5. This research represents a key step towards understanding the evolutionary dynamics of deleterious variants in sorghum and provides a comparative genomics framework to start prioritizing these variants for removal through genome editing and breeding.


Assuntos
Evolução Molecular , Mutação/genética , Sorghum/genética , Zea mays/genética , Alelos , Carga Genética , Genômica , Desequilíbrio de Ligação/genética , Análise de Sequência de DNA
6.
Proc Natl Acad Sci U S A ; 116(12): 5542-5549, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30842277

RESUMO

Deep learning methodologies have revolutionized prediction in many fields and show potential to do the same in molecular biology and genetics. However, applying these methods in their current forms ignores evolutionary dependencies within biological systems and can result in false positives and spurious conclusions. We developed two approaches that account for evolutionary relatedness in machine learning models: (i) gene-family-guided splitting and (ii) ortholog contrasts. The first approach accounts for evolution by constraining model training and testing sets to include different gene families. The second approach uses evolutionarily informed comparisons between orthologous genes to both control for and leverage evolutionary divergence during the training process. The two approaches were explored and validated within the context of mRNA expression level prediction and have the area under the ROC curve (auROC) values ranging from 0.75 to 0.94. Model weight inspections showed biologically interpretable patterns, resulting in the hypothesis that the 3' UTR is more important for fine-tuning mRNA abundance levels while the 5' UTR is more important for large-scale changes.


Assuntos
Sequência de Bases/genética , Aprendizado Profundo , Evolução Molecular , Transcrição Gênica/genética , DNA/genética , DNA/metabolismo , Regulação da Expressão Gênica/genética , Modelos Teóricos , Análise de Sequência de DNA
7.
Genetics ; 211(3): 1075-1087, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30622134

RESUMO

Sorghum (Sorghum bicolor L.) is a major food cereal for millions of people worldwide. The sorghum genome, like other species, accumulates deleterious mutations, likely impacting its fitness. The lack of recombination, drift, and the coupling with favorable loci impede the removal of deleterious mutations from the genome by selection. To study how deleterious variants impact phenotypes, we identified putative deleterious mutations among ∼5.5 M segregating variants of 229 diverse biomass sorghum lines. We provide the whole-genome estimate of the deleterious burden in sorghum, showing that ∼33% of nonsynonymous substitutions are putatively deleterious. The pattern of mutation burden varies appreciably among racial groups. Across racial groups, the mutation burden correlated negatively with biomass, plant height, specific leaf area (SLA), and tissue starch content (TSC), suggesting that deleterious burden decreases trait fitness. Putatively deleterious variants explain roughly one-half of the genetic variance. However, there is only moderate improvement in total heritable variance explained for biomass (7.6%) and plant height (average of 3.1% across all stages). There is no advantage in total heritable variance for SLA and TSC. The contribution of putatively deleterious variants to phenotypic diversity therefore appears to be dependent on the genetic architecture of traits. Overall, these results suggest that incorporating putatively deleterious variants into genomic models slightly improves prediction accuracy because of extensive linkage. Knowledge of deleterious variants could be leveraged for sorghum breeding through either genome editing and/or conventional breeding that focuses on the selection of progeny with fewer deleterious alleles.


Assuntos
Modelos Genéticos , Acúmulo de Mutações , Característica Quantitativa Herdável , Sorghum/genética , Biomassa , Frequência do Gene , Aptidão Genética , Mutação com Perda de Função , Sorghum/crescimento & desenvolvimento , Sorghum/metabolismo , Amido/genética
8.
Sci Rep ; 8(1): 13526, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201978

RESUMO

Wheat is an important staple that acts as a primary source of dietary energy, protein, and essential micronutrients such as iron (Fe) and zinc (Zn) for the world's population. Approximately two billion people suffer from micronutrient deficiency, thus breeders have crossed high Zn progenitors such as synthetic hexaploid wheat, T. dicoccum, T. spelta, and landraces to generate wheat varieties with competitive yield and enhanced grain Zn that are being adopted by farmers in South Asia. Here we report a genome-wide association study (GWAS) using the wheat Illumina iSelect 90 K Infinitum SNP array to characterize grain Zn concentrations in 330 bread wheat lines. Grain Zn phenotype of this HarvestPlus Association Mapping (HPAM) panel was evaluated across a range of environments in India and Mexico. GWAS analysis revealed 39 marker-trait associations for grain Zn. Two larger effect QTL regions were found on chromosomes 2 and 7. Candidate genes (among them zinc finger motif of transcription-factors and metal-ion binding genes) were associated with the QTL. The linked markers and associated candidate genes identified in this study are being validated in new biparental mapping populations for marker-assisted breeding.


Assuntos
Biofortificação , Grão Comestível/genética , Locos de Características Quantitativas , Triticum/genética , Zinco/análise , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Grão Comestível/química , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Índia , México , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Polimorfismo de Nucleotídeo Único , Sementes/química , Sementes/genética , Triticum/química , Dedos de Zinco/genética
9.
New Phytol ; 214(1): 271-283, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27918628

RESUMO

The gaseous phytohormone ethylene plays an important role in spike development in wheat (Triticum aestivum). However, the genotypic variation and the genomic regions governing spike ethylene (SET) production in wheat under long-term heat stress remain unexplored. We investigated genotypic variation in the production of SET and its relationship with spike dry weight (SDW) in 130 diverse wheat elite lines and landraces under heat-stressed field conditions. We employed an Illumina iSelect 90K single nucleotide polymorphism (SNP) genotyping array to identify the genetic loci for SET and SDW through a genome-wide association study (GWAS) in a subset of the Wheat Association Mapping Initiative (WAMI) panel. The SET and SDW exhibited appreciable genotypic variation among wheat genotypes at the anthesis stage. There was a strong negative correlation between SET and SDW. The GWAS uncovered five and 32 significant SNPs for SET, and 22 and 142 significant SNPs for SDW, in glasshouse and field conditions, respectively. Some of these SNPs closely localized to the SNPs for plant height, suggesting close associations between plant height and spike-related traits. The phenotypic and genetic elucidation of SET and its relationship with SDW supports future efforts toward gene discovery and breeding wheat cultivars with reduced ethylene effects on yield under heat stress.


Assuntos
Etilenos/metabolismo , Estudo de Associação Genômica Ampla , Resposta ao Choque Térmico/genética , Triticum/genética , Triticum/fisiologia , Biomassa , Genótipo , Fenótipo , Triticum/anatomia & histologia
10.
Front Plant Sci ; 7: 461, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148292

RESUMO

Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 µM) of ABA increased shoot relative growth rate (RGR) in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor) spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene, and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early-stage selection tool aiding genotype selection for stress tolerance.

11.
Front Plant Sci ; 6: 180, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852727
12.
Theor Appl Genet ; 127(7): 1463-89, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24913362

RESUMO

Transferring the knowledge bases between related species may assist in enlarging the yield potential of crop plants. Being cereals, rice and wheat share a high level of gene conservation; however, they differ at metabolic levels as a part of the environmental adaptation resulting in different yield capacities. This review focuses on the current understanding of genetic and molecular regulation of yield-associated traits in both crop species, highlights the similarities and differences and presents the putative knowledge gaps. We focus on the traits associated with phenology, photosynthesis, and assimilate partitioning and lodging resistance; the most important drivers of yield potential. Currently, there are large knowledge gaps in the genetic and molecular control of such major biological processes that can be filled in a translational biology approach in transferring genomics and genetics informations between rice and wheat.


Assuntos
Oryza/genética , Triticum/genética , Adaptação Fisiológica/genética , Cruzamento , Hibridização Genômica Comparativa , Genômica , Metabolômica , Fenótipo , Fotossíntese/genética , Locos de Características Quantitativas
13.
Plant Sci ; 181(4): 387-400, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21889044

RESUMO

Myo-inositol is a versatile compound that generates diversified derivatives upon phosphorylation by lipid-dependent and -independent pathways. Phosphatidylinositols form one such group of myo-inositol derivatives that act both as membrane structural lipid molecules and as signals. The significance of these compounds lies in their dual functions as signals as well as key metabolites under stress. Several stress- and non-stress related pathways regulated by phosphatidylinositol isoforms and associated enzymes, kinases and phosphatases, appear to function in parallel to coordinatively adapt growth and stress responses in plants. Recent evidence also postulates their crucial roles in nuclear functions as they interact with the key players of chromatin structure, yet other nuclear functions remain largely unknown. Phosphatidylinositol monophosphate 5-kinase interacts with and represses a cytosolic neutral invertase, a key enzyme of sugar metabolism suggesting a crosstalk between lipid and sugar signaling. Besides phosphatidylinositol, myo-inositol derived galactinol and associated raffinose-family oligosaccharides are emerging as antioxidants and putative signaling compounds too. Importantly, myo-inositol polyphosphate 5-phosphatase (5PTase) acts, depending on sugar status, as a positive or negative regulator of a global energy sensor, SnRK1. This implies that both myo-inositol- and sugar-derived (e.g. trehalose 6-phosphate) molecules form part of a broad regulatory network with SnRK1 as the central regulator. Recently, it was shown that the transcription factor bZIP11 also takes part in this network. Moreover, a functional coordination between neutral invertase and hexokinase is emerging as a sweet network that contributes to oxidative stress homeostasis in plants. In this review, we focus on myo-inositol, its direct and more downstream derivatives (galactinol, raffinose), and the contribution of their associated networks to plant stress tolerance.


Assuntos
Inositol/metabolismo , Transdução de Sinais , Estresse Fisiológico , Metabolismo dos Carboidratos , Metabolismo Energético , Inositol/química , Proteínas de Plantas/metabolismo
14.
J Exp Bot ; 60(1): 9-18, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19036839

RESUMO

In nature, no single plant completes its life cycle without encountering environmental stress. When plant cells surpass stress threshold stimuli, chemically reactive oxygen species (ROS) are generated that can cause oxidative damage or act as signals. Plants have developed numerous ROS-scavenging systems to minimize the cytotoxic effects of ROS. The role of sucrosyl oligosaccharides (SOS), including fructans and the raffinose family oligosaccharides (RFOs), is well established during stress physiology. They are believed to act as important membrane protectors in planta. So far a putative role for sucrose and SOS during oxidative stress has largely been neglected, as has the contribution of the vacuolar compartment. Recent studies suggest a link between SOS and oxidative defence and/or scavenging. SOS might be involved in stabilizing membrane-associated peroxidases and NADPH oxidases, and SOS-derived radicals might fulfil an intermediate role in oxido-reduction reactions taking place in the vicinity of membranes. Here, these emerging features are discussed and perspectives for future research are provided.


Assuntos
Sequestradores de Radicais Livres/metabolismo , Oligossacarídeos/metabolismo , Estresse Oxidativo , Plantas/metabolismo , Sacarose/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
J Exp Bot ; 59(11): 2905-16, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18603617

RESUMO

Plants are sessile and sensitive organisms known to possess various regulatory mechanisms for defending themselves under stress environments. Fructans are fructose-based polymers synthesized from sucrose by fructosyltransferases (FTs). They have been increasingly recognized as protective agents against abiotic stresses. Using model membranes, numerous in vitro studies have demonstrated that fructans can stabilize membranes by direct H-bonding to the phosphate and choline groups of membrane lipids, resulting in a reduced water outflow from the dry membranes. Inulin-type fructans are flexible random-coiled structures that can adopt many conformations, allowing them to insert deeply within the membranes. The devitrification temperature (T(g)) can be adjusted by their varying molecular weights. In addition, above T(g) their low crystallization rates ensure prolonged membrane protection. Supporting, in vivo studies with transgenic plants expressing FTs showed fructan accumulation and an associated improvement in freezing and/or chilling tolerance. The water-soluble nature of fructans may allow their rapid adaptation as cryoprotectants in order to give optimal membrane protection. One of the emerging concepts for delivering vacuolar fructans to the extracellular space for protecting the plasma membrane is vesicle-mediated, tonoplast-derived exocytosis. It should, however, be noted that natural stress tolerance is a very complex process that cannot be explained by the action of a single molecule or mechanism.


Assuntos
Adaptação Fisiológica , Membrana Celular/metabolismo , Frutanos/metabolismo , Plantas/metabolismo , Evolução Biológica , Congelamento
16.
Trends Plant Sci ; 13(8): 409-14, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18619894

RESUMO

Fructans are fructose-based polymers associated with freezing tolerance. They might act directly via membrane stabilization or indirectly by stimulating alternative cryoprotectants. Fructans and fructan biosynthetic enzymes, in general, are believed to be present in the vacuole. This paper draws particular attention to the surprising presence of fructans and fructan exohydrolase activity in the apoplast of cold-stressed plants. This observation raises questions concerning the origin of apoplastic fructans and suggests that fructans are transported to the apoplast by post-synthesis mechanisms, perhaps induced by cold. We propose a conceptual vesicle-mediated transport model for the movement of vacuolar fructans to the apoplast, where they could assist in stabilizing the plasma membrane.


Assuntos
Adaptação Fisiológica/fisiologia , Congelamento , Frutanos/metabolismo , Transporte Biológico/fisiologia , Glicosídeo Hidrolases/metabolismo , Modelos Biológicos , Plantas/enzimologia , Plantas/metabolismo , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...