Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Rev. bras. entomol ; 67(1): e20220092, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1423214

RESUMO

ABSTRACT The Cerambycidae Oncideres impluviata (Germar, 1823) is an important insect pest for Acacia mearnsii De Wild in Southern Brazil. The damage caused by their girdling behavior reduces tree productivity, specially in the early years of plant establishment, when girdling is performed on the main trunk of trees. Here, we used a fragment of the mtDNA COI gene to analyze the genetic diversity, population structure and demography of O. impluviata in Southern Brazil, as well as to present the first hypothesis of phylogenetic relationships among species of the genus Oncideres. Our results identified five distinct haplotypes among the populations of O. impluviata, with the most common haplotype identified as O.imp_COI_01. The phylogenetic inferences corroborated the monophyly of O. impluviata with maximum statistical support. In addition, the phylogeny recovered three main population strains that are largely congruent with the haplotype network, which includes two lineages that are found in different edaphic regions of Rio Grande do Sul (Serra do Sudeste and Encosta Inferior do Nordeste). This is the first molecular phylogenetic assessment of O. impluviata. Our findings provide insights into the evolution of a significant species for the Brazilian forestry sector, as well as new resources for planning of pest management strategies.

2.
Neotrop Entomol ; 51(6): 809-820, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36315395

RESUMO

Bumblebees are essential insects for the preservation of biodiversity in many ecosystems, as they can pollinate a wide variety of wild and cultivated plants. Knowledge of the genetic diversity of bumblebees can be used to understand and predict the health status of bee populations, enabling the development of strategies for crop management and conservation of this important group of pollinators. Here, we characterized the genetic diversity of B. morio populations from the Rio Grande do Sul state, Brazil, by amplification of the partial mitochondrial cytochrome oxidase I gene. The resulting data were then compared with genetic parameters of Bombus morio (Swederus 1787) obtained in populations from this species' full geographic range in South America. Our results revealed the presence of nine mitochondrial haplotypes in Rio Grande do Sul, three of which were novel haplotypes, and of significant genetic divergence among bumblebee populations from Brazil and South America. The mitochondrial haplotype BM01 was the most common and is probably the ancestral haplotype from which the others originated. There is also evidence that strong gene flow has taken place among Brazilian B. morio populations, explaining the sharing of haplotypes between distant populations. The populations of B. morio from Rio Grande do Sul present significant genetic diversity as the species is native to Southern/Southeastern Brazil and adapted to the ecological conditions in this wide range. Having well-connected populations with a large genetic potential will help this species to remain well adapted to the different environmental conditions within its native range.


Assuntos
Ecossistema , Fluxo Gênico , Abelhas/genética , Animais , Brasil , Haplótipos , Variação Genética
3.
Sci Rep ; 12(1): 12020, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835854

RESUMO

The frequent use of insecticides to manage soybean aphids, Aphis glycines (Hemiptera: Aphididae), in the United States has contributed to field-evolved resistance. Pyrethroid-resistant aphids have nonsynonymous mutations in the voltage-gated sodium channel (vgsc). We identified a leucine to phenylalanine mutation at position 1014 (L1014F) and a methionine to isoleucine mutation (M918I) of the A. glycines vgsc, both suspected of conferring knockdown resistance (kdr) to lambda-cyhalothrin. We developed molecular markers to identify these mutations in insecticide-resistant aphids. We determined that A. glycines which survived exposure to a diagnostic concentration of lambda-cyhalothrin and bifenthrin via glass-vial bioassays had these mutations, and showed significant changes in the resistance allele frequency between samples collected before and after field application of lambda-cyhalothrin. Thus, a strong association was revealed between aphids with L1014F and M918I vgsc mutations and survival following exposure to pyrethroids. Specifically, the highest survival was observed for aphids with the kdr (L1014F) and heterozygote super-kdr (L1014F + M918I) genotypes following laboratory bioassays and in-field application of lambda-cyhalothrin. These genetic markers could be used as a diagnostic tool for detecting insecticide-resistant A. glycines and monitoring the geographic distribution of pyrethroid resistance. We discuss how generating these types of data could improve our efforts to mitigate the effects of pyrethroid resistance on crop production.


Assuntos
Afídeos , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , Afídeos/genética , Marcadores Genéticos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mutação , Fenótipo , Piretrinas/farmacologia , Glycine max , Canais de Sódio Disparados por Voltagem/genética
4.
J Econ Entomol ; 115(4): 1191-1202, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35766410

RESUMO

Twenty years after the arrival of soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), in the United States, it remains the most economically important arthropod pest of soybean in the Upper Midwest Region. After years of repeated and sustained insecticidal pressures placed on the aphid, resistance to the pyrethroid class of insecticides has been documented in multiple years over a large geographic area. In this study, the fitness of aphid isolates displaying resistant and susceptible phenotypes to λ-cyhalothrin were compared within several experiments over three soybean-growing seasons. Rates of population increase were evaluated on whole plants in the greenhouse, intrinsic rates of increase were calculated from leaf discs in the laboratory, and aphid size and asymmetry were compared through tibial measurements. No evidence of a fitness cost associated with the resistant phenotype was seen in any of our experiments. In contrast, individual resistant isolates occasionally supported significantly higher fitness values than some susceptible isolates. Additionally, a pooled analysis comparing resistant and susceptible phenotypes across years and isolates revealed that, on average, the resistant phenotype had significantly higher fitness values than the susceptible phenotype in most experiments. The lack of reproductive fitness costs associated with the pyrethroid-resistant phenotype raises concerns for longevity of pyrethroid use in soybean aphid management.


Assuntos
Afídeos , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Piretrinas/farmacologia , Estações do Ano , Glycine max/genética , Estados Unidos
5.
J Econ Entomol ; 115(1): 279-288, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35139216

RESUMO

The soybean aphid, Aphis glycines (Hemiptera: Aphididae), is an invasive pest that can cause severe yield loss to soybeans in the North Central United States. A tactic to counter this pest is the use of aphid-resistant soybean varieties. However, the frequency of virulent biotypes that can survive on resistant varieties is expected to increase as more farmers use these varieties. Soybean aphids can alter soybean physiology primarily by two mechanisms, feeding facilitation, and the obviation of resistance, favoring subsequent colonization by additional conspecifics. We developed a nonlocal, differential equation population model to explore the dynamics of these biological mechanisms on soybean plants coinfested with virulent and avirulent aphids. We then use demographic parameters from laboratory experiments to perform numerical simulations via the model. We used this model to determine that initial conditions are an important factor in the season-long cooccurrence of both biotypes. The initial population of both biotypes above the resistance threshold or avirulent aphid close to resistance threshold and high virulent aphid population results in coexistence of the aphids throughout the season. These simulations successfully mimicked aphid dynamics observed in the field- and laboratory-based microcosms. The model showed an increase in colonization of virulent aphids increases the likelihood that aphid resistance is suppressed, subsequently increasing the survival of avirulent aphids. This interaction produced an indirect, positive interaction between the biotypes. These results suggest the potential for a 'within plant' refuge that could contribute to the sustainable use of aphid-resistant soybeans.


Assuntos
Afídeos , Animais , Afídeos/fisiologia , Estações do Ano , Glycine max/fisiologia
6.
Pest Manag Sci ; 78(5): 2000-2010, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35102702

RESUMO

BACKGROUND: Foliar application of insecticides is the main strategy to manage soybean aphid, Aphis glycines (Hemiptera: Aphididae), in the northcentral United States. Subpopulations of A. glycines have multiple nonsynonymous mutations in the voltage-gated sodium channel (vgsc) genes that are associated with pyrethroid resistance. We explored if fitness costs are associated with phenotypes conferred by vgsc mutations using life table analyses. We predicted that there would be significant differences between pyrethroid susceptibility and field-collected, parthenogenetic isofemale clones with differing, nonsynonymous mutations in vgsc genes. RESULTS: Estimated resistance ratios for the pyrethroid-resistant clones ranged from 3.1 to 37.58 and 5.6 to 53.91 for lambda-cyhalothrin and bifenthrin, respectively. Although life table analyses revealed some biological and demographic parameters to be significantly different among the clonal lines, there was no association between levels of pyrethroid resistance and a decline in fitness. By contrast, one of the most resistant clonal lines (SBA-MN1-2017) had a significantly higher finite rate of increase, intrinsic rate of increase and greater overall fitness compared to the susceptible control and other pyrethroid-resistant clonal lines. CONCLUSIONS: Our life history analysis suggests that there are no negative pleotropic effects associated with the pyrethroid resistance in the clonal A. glycines lines used in this study. We discuss the potential impact of these results on efficacies of insecticide resistance management (IRM) and integrated pest management (IPM) plans directed at delaying the spread of pyrethroid-resistant A. glycines.


Assuntos
Afídeos , Inseticidas , Piretrinas , Animais , Afídeos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Piretrinas/farmacologia , Glycine max/genética
7.
Environ Entomol ; 49(5): 1137-1144, 2020 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-32794557

RESUMO

Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), is the main pest of maize in Brazil, attacking plants from emergence to reproductive stages. Here, we conducted studies to evaluate the efficacy of two seed treatments (chlorantraniliprole alone and imidacloprid combined with thiodicarb) on Bt and non-Bt maize in laboratory bioassays with distinct FAW strains that are susceptible, selected for resistance to Bt-maize single (Cry1F) or pyramided (Cry1A.105 + Cry2Ab2) events and F1 hybrids of the selected and susceptible strains (heterozygotes), and in the field against a natural infestation. In the laboratory, leaf-discs from seed treated Bt-maize plants at 7 d after emergence (DAE) increased the mortality of FAW resistant, heterozygote, and susceptible strains up to 24.8%, when compared with the respective maize grown without a seed treatment. In the field against natural infestations of FAW, Bt maize with a seed treatment had ~30% less FAW damage than non-Bt maize with the same seed treatment at 7 and 14 DAE. No differences in FAW damage was observed between Bt and non-Bt maize grown with and without a seed treatment at 21 DAE. Maize seeds treated with chlorantraniliprole alone or imidacloprid and thiodicarb combined presented limited protection against early infestations of FAW strains under laboratory and field studies.


Assuntos
Bacillus thuringiensis , Zea mays , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Brasil , Endotoxinas , Proteínas Hemolisinas/genética , Resistência a Inseticidas , Larva , Plantas Geneticamente Modificadas/genética , Sementes , Spodoptera , Zea mays/genética
8.
J Econ Entomol ; 113(4): 1591-1608, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32515787

RESUMO

Soybean production in Brazil has been markedly affected by invasions of non-native arthropod species that feed on the crop, severely impacting biodiversity, food security, health, and economic development. Data on soybean production losses and increase in insecticide usage over the last two decades have not been explored in association with past invasion events, and the dynamics underlying the recent blitz of invasive species into Brazil remain largely unclear. We provide a review of arthropod invasions in the Brazilian soybean agroecosystem since 1990, indicating that the introductions of Bemisia tabaci (Gennadius) MEAM1 (Hemiptera: Aleyrodidae), Tetranychus urticae (Koch) (Acari: Tetranychidae), and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) are likely correlated with periods of increase in insecticide usage for soybean production. Using these three cases as examples, we review factors that could lead to increased likelihood of future invasions by particular pests, outlining four possible criteria to evaluate potential invasiveness of non-native arthropods: likelihood of entry, likelihood of establishment, biological features of the species, and availability of control measures. Spodoptera litura (F.) (Lepidoptera: Noctuidae) and Aphis glycines (Matsumura) (Hemiptera: Sternorrhynca) are examples of highly damaging soybean pests, related to one or more of these factors, that could be introduced into Brazil over the next years and which could lead to problematic scenarios. Melanagromyza sojae (Zehnter) (Diptera: Agromyzidae) also meets these criteria and has successfully invaded and colonized Brazilian soybean fields in recent years. Our review identifies current issues within soybean pest management in Brazil and highlights the need to adopt management measures to offset future costs and minimize lost revenue.


Assuntos
Afídeos , Inseticidas , Mariposas , Animais , Brasil , Glycine max
9.
Sci Rep ; 10(1): 3487, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103053

RESUMO

The bronze bug, Thaumastocoris peregrinus, an Australian native insect, has become a nearly worldwide invasive pest in the last 16 years and has been causing significant damage to eucalypts (Myrtaceae), including Eucalyptus spp. and Corymbia spp. Its rapid expansion leads to new questions about pathways and routes that T. peregrinus used to invade other continents and countries. We used mtDNA to characterize specimens of T. peregrinus collected from 10 countries where this species has become established, including six recently invaded countries: Chile, Israel, Mexico, Paraguay, Portugal, and the United States of America. We then combined our mtDNA data with previous data available from South Africa, Australia, and Europe to construct a world mtDNA network of haplotypes. Haplotype A was the most common present in all specimens of sites sampled in the New World, Europe, and Israel, however from Australia second more frequently. Haplotype D was the most common one from native populations in Australia. Haplotype A differs from the two major haplotypes found in South Africa (D and G), confirming that at least two independent invasions occurred, one from Australia to South Africa, and the other one from Australia to South America (A). In conclusion, Haplotype A has an invasion success over many countries in the World. Additionally, analyzing data from our work and previous reports, it is possible to suggest some invasive routes of T. peregrinus to predict such events and support preventive control measures.


Assuntos
Heterópteros/genética , Animais , Ásia , Austrália , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Europa (Continente) , Variação Genética , Haplótipos , Proteínas de Insetos/química , Proteínas de Insetos/genética , América do Norte , América do Sul
10.
Pest Manag Sci ; 76(4): 1464-1471, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31659872

RESUMO

BACKGROUND: Soybean aphid, Aphis glycines, is an invasive insect in North America, considered one of the most important pests of soybean. Their management relies heavily on foliar insecticides, but there is growing effort to expand these tools to include aphid-resistant varieties. We explored if the LC50 and LC25 of lambda-cyhalothrin varied between virulent (resistant to Aphis glycines (Rag) soybeans) and avirulent (susceptible to Rag-genes soybeans) populations of soybean aphid with a leaf-dip bioassay. We also investigated the response to the LC25 of lambda-cyhalothrin on adults (F0) and their progeny (F1) for both avirulent and virulent soybean aphid. RESULTS: The LC50 of the virulent aphid population was significantly higher compared with the LC50 of the avirulent population. The LC25 significantly reduced fecundity of the F0 generation of avirulent soybean aphid, but no significant effect was observed for virulent aphids. In addition, the LC25 significantly shortened the adult pre-oviposition period (APOP) and lengthened the total pre-oviposition period (TPOP) of avirulent aphids, while the mean generation time (T) was significantly increased. For the virulent aphid, sublethal exposure significantly lengthened development time of first and third instars, TPOP, and adult longevity. In addition, all demographic parameters of virulent soybean aphid were significantly affected when they were exposed to the LC25 of lambda-cyhalothrin. CONCLUSION: Our results demonstrate lambda-cyhalothrin is less toxic to virulent aphids and exposure to the LC25 can trigger hormesis, which may have implications for the long-term management of this pest with this insecticide as well as with aphid-resistant varieties of soybean. © 2019 Society of Chemical Industry.


Assuntos
Afídeos , Animais , Feminino , Nitrilas , Piretrinas , Glycine max , Virulência
11.
Rev. bras. entomol ; 62(4): 275-282, Oct.-Dec. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1045532

RESUMO

ABSTRACT The replacement of natural grassland by cultivated areas might favor the increase in abundance of some root-feeding species such as the white grubs, which may become a constraint for field crop production. This research aimed to assay the population density and geographical distribution of white grubs pest and other species in natural grassland and cultivated areas throughout the Brazilian Pampa biome. White grubs were sampled in 18 locations in both landscape use types and identified. Population density (number of larvae m-2) was calculated for each recorded species and sorted within two groups (pest species and other species), compared between natural grasslands and cultivated areas, as well as among locations. A dendrogram to evaluate species similarity among locations was built based on combined data obtained from both landscape use types throughout the region. In total, 31 species were found in the Brazilian Pampa, and four of them are considered as crop pests: Diloboderus abderus (Sturm, 1826), Euetheola humilis (Burmeister, 1847), Lyogenys fusca (Blanchard, 1830), and Phyllophaga triticophaga Morón & Salvadori, 1998. The average population density of pest species in cultivated areas was less than five larvae m-2, at most of locations. Some species had a wide geographical distribution (e.g. D. abderus and Cyclocephala modesta Burmeister), while other melolontids occurred at only one location. The knowledge of which white grub species are present in a field and its population densities assist farmers to take proper management decisions.

13.
Environ Entomol ; 47(5): 1064-1071, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30052823

RESUMO

Annual crops or exotic trees for cellulose extraction have replaced natural grassland areas of the Brazilian Pampa biome. These activities have been intensified in recent years and may lead to changes in the white grub complex. The objective of this study was to characterize the diversity and abundance of white grubs in cultivated and natural grassland areas of the Brazilian Pampa biome. We conducted samplings in natural grassland and cultivated areas throughout 18 locations in the Brazilian Pampa. Diversity index and nonmetric multidimensional scaling (NMDS) were used to compare the Melolonthidae community within and between cultivated and natural grassland areas. Diloboderus abderus Sturm, Cyclocephala modesta Burmeister, and Plectris sp.5 (Coleoptera: Melolonthidae) were the most abundant taxa, accounting for 49.08% of all white grubs collected from both land use types. Abundance, diversity, and evenness indices were greater in natural grassland than in cultivated areas. The NMDS demonstrated that natural grassland and cultivated areas share similar white grub species assemblages, with 22 species collected in both land use types. Our data suggest that most of the Melolonthidae species collected in the Brazilian Pampa are capable of persisting in cultivated areas. This is the first work characterizing the Melolonthidae community throughout the Brazilian Pampa, which is vital for implementing pest management tactics and conservation of beneficial species.


Assuntos
Agricultura , Biodiversidade , Besouros/fisiologia , Pradaria , Animais , Brasil , Ecossistema , Densidade Demográfica
14.
Biota Neotrop. (Online, Ed. ingl.) ; 15(2): e20140108, Apr.-June 2015. graf
Artigo em Inglês | LILACS | ID: biblio-951040

RESUMO

This note is the first report on the infection of Diloboderus abderus Sturm (Coleoptera: Melolonthidae) larvae by the fungusOphiocordyceps melolonthae (Hypocreales: Ophiocordycipitaceae) in subtropical Brazil. Identification was made possible by extraction and sequencing of the fungal DNA that was covering the larvae's mouthparts, prothorax, cuticle, and digestive tract (alimentary canal). Amplification, sequencing and comparison of the ITS region of the ribosomal DNA with voucher sequences of GenBank were performed and were 95% similar to Ophiocordyceps melolonthae. The fungus is an entomopathogen which attacks Melolonthidae larvae, having scientific and economic importance because of the need for increased knowledge on its distribution and on alternatives for biological control of white grubs.


Esta nota é o primeiro registro da infecção de larvas de Diloboderus abderus Sturm pelo fungoOphiocordyceps melolonthae na região subtropical do Brasil. A identificação foi possível graças è extração e sequenciamento do DNA do fungo que cobria o aparelho bucal, protórax, cutícula e aparelho digestivo (canal alimentar) das larvas. Amplificação, sequenciamento e comparação da região ITS com sequências voucher do GenBank foram realizados, mostrando 95% de similaridade com Ophiocordyceps melolonthae. O fungo é um entomopatógeno que ataca larvas Melolonthidae, tendo importância científica e econômica devido è necessidade de aumento do conhecimento sobre sua distribuição e de alternativas de controle biológico de corós.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...