Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Psychiatry ; 15: 1355068, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439792

RESUMO

Introduction: Interpersonal motor synchrony (IMS) is the spontaneous, voluntary, or instructed coordination of movements between interacting partners. Throughout the life cycle, it shapes social exchanges and interplays with intra- and inter-individual characteristics that may diverge in Autism Spectrum Disorder (ASD). Here we perform a systematic review and meta-analysis to summarize the extant literature and quantify the evidence about reduced IMS in dyads including at least one participant with a diagnosis of ASD. Methods: Empirical evidence from sixteen experimental studies was systematically reviewed, encompassing spontaneous and instructed paradigms as well as a paucity of measures used to assess IMS. Of these, thirteen studies (n = 512 dyads) contributed measures of IMS with an in situ neurotypical partner (TD) for ASD and control groups, which could be used for meta-analyses. Results: Reduced synchronization in ASD-TD dyads emerged from both the systematic review and meta-analyses, although both small and large effect sizes (i.e., Hedge's g) in favor of the control group are consistent with the data (Hedge's g = .85, p < 0.001, 95% CI[.35, 1.35], 95% PI[-.89, 2.60]). Discussion: Uncertainty is discussed relative to the type of task, measures, and age range considered in each study. We further discuss that sharing similar experiences of the world might help to synchronize with one another. Future studies should not only assess whether reduced IMS is consistently observed in ASD-TD dyads and how this shapes social exchanges, but also explore whether and how ASD-ASD dyads synchronize during interpersonal exchanges.

3.
Sci Rep ; 14(1): 6747, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514732

RESUMO

Touching a friend to comfort or be comforted is a common prosocial behaviour, firmly based in mutual trust. Emphasising the interactive nature of trust and touch, we suggest that vulnerability, reciprocity and individual differences shape trust and perceptions of touch. We further investigate whether these elements also apply to companion robots. Participants (n = 152) were exposed to four comics depicting human-human or human-robot exchanges. Across conditions, one character was sad, the other initiated touch to comfort them, and the touchee reciprocated the touch. Participants first rated trustworthiness of a certain character (human or robot in a vulnerable or comforting role), then evaluated the two touch phases (initiation and reciprocity) in terms of interaction realism, touch appropriateness and pleasantness, affective state (valence and arousal) attributed to the characters. Results support an interactive account of trust and touch, with humans being equally trustworthy when comforting or showing vulnerability, and reciprocity of touch buffering sadness. Although these phenomena seem unique to humans, propensity to trust technology reduces the gap between how humans and robots are perceived. Two distinct trust systems emerge: one for human interactions and another for social technologies, both necessitating trust as a fundamental prerequisite for meaningful physical contact.


Assuntos
Robótica , Confiança , Humanos , Emoções , Amigos/psicologia , Tato , Confiança/psicologia
4.
PLoS One ; 18(4): e0284407, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37043514

RESUMO

Our ability to perform voluntary actions and make choices is shaped by the motivation from control over the resulting effects (agency) and from positive outcomes (reward). The underlying action-outcome binding mechanisms rely on sensorimotor abilities that specialise through child development and undergo different trajectories in autism. The study aimed at disentangling the role of agency and reward in driving action selection of autistic and non-autistic children and adults, who were asked to freely select one of three candies and feed the animals appearing on a tablet. The candies were associated with different probabilities of delivering a neutral vs no effect (agency task), or a positive vs neutral effect (reward task). Choices and reaction times (RT) were measured to understand whether participants preferred and were faster at selecting options with higher probability of producing a neutral vs. no effect (agency) or a positive vs. neutral effect (reward). Participants' choices and RT were not affected by agency, whereas a more frequent selection of the option with higher probability of a positive vs. neutral effect emerged across groups, thus suggesting a reward effect. Autistic participants selected less frequently the option with chance level of receiving a neutral or no effect, which could be interpreted as a sign of reduced tolerance of uncertainty. Across tasks, conditions and age groups, autistic participants presented shorter RT, which is a marker of reduced action planning and control. Future research should deepen how tolerance of uncertainty, action planning and control impact the way autistic individuals make choices in everyday life situations, potentially contributing to restricted and repetitive behaviours.


Assuntos
Transtorno Autístico , Animais , Recompensa , Motivação , Tempo de Reação , Probabilidade
5.
Brain Sci ; 12(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36291344

RESUMO

Our ability to perform voluntary actions and make choices is shaped by the motivation from having control over the resulting effects (agency) and positive outcomes (reward). We offer an overview of distinct and common behavioral and neural signatures of agency and reward. We discuss their typical and atypical developmental trajectories, focusing on autism spectrum disorder (ASD), which is characterized by neurodiverse processes underlying action selection. We propose that reduced sensitivity to agency and reward in ASD may be related to atypical multisensory processes and motor planning, with potential for understanding restricted and repetitive behaviors. We emphasize the limitations of the existing literature, and prospects for future research. Understanding the neurocognitive processes that shape the way people with ASD select actions and perceive outcomes is essential to support not only learning, but also volition and self-determination.

6.
Sci Rep ; 12(1): 18202, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307452

RESUMO

To flexibly regulate their behavior, children's ability to inhibit prepotent responses arises from cognitive and motor mechanisms that have an intertwined developmental trajectory. Subtle differences in planning and control can contribute to impulsive behaviors, which are common in Attention Deficit and Hyperactivity Disorder (ADHD) and difficult to be assessed and trained. We adapted a Go/No-Go task and employed a portable, low-cost kinematic sensor to explore the different strategies used by children with ADHD or typical development to provide a prepotent response (dominant condition) or inhibit the prepotent and select an alternative one (non-dominant condition). Although no group difference emerged on accuracy levels, the kinematic analysis of correct responses revealed that, unlike neurotypical children, those with ADHD did not show increased motor planning in non-dominant compared to dominant trials. Future studies should investigate whether motor control could help children with ADHD compensate for planning difficulties. This strategy might make inhibition harder in naturalistic situations that involve complex actions. Combining cognitive and kinematic measures is a potential innovative method for assessment and intervention of subtle differences in executive processes such as inhibition, going deeper than is possible based on accuracy outcomes alone.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Criança , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Inibição Psicológica
7.
Brain Sci ; 12(2)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35203911

RESUMO

Multimedia technologies and virtual reality offer unique possibilities to manipulate sensory, motor, interpersonal, and cognitive processes contributing to atypical developmental trajectories, thus holding an explosive potential to design innovative and engaging interventions. However, there has been little progress in developing interventions that go beyond the patient's diagnosis or the fascination of technology and rather spring from a deep understanding of the specific neuropsychological processes to be nurtured in individuals. This perspective paper outlines how recent insights from developmental cognitive neuroscience can be leveraged to promote children's multidimensional development and highlight future directions and challenges for innovating both research and clinical practice. Finally, we focus on some practical examples of multimedia and virtual reality activities we have designed to stimulate bodily-self experiences, which are crucial for building up a coherent sense of self and lay the foundation for interacting with the external world. Atypical bodily self is an early marker of heterogeneous neurodevelopmental conditions (such as autism spectrum disorders) and seems to be under-targeted in research and clinical approaches.

8.
Atten Percept Psychophys ; 83(7): 2865-2878, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34341941

RESUMO

Past research on the advantages of multisensory input for remembering spatial information has mainly focused on memory for objects or surrounding environments. Less is known about the role of cue combination in memory for own body location in space. In a previous study, we investigated participants' accuracy in reproducing a rotation angle in a self-rotation task. Here, we focus on the memory aspect of the task. Participants had to rotate themselves back to a specified starting position in three different sensory conditions: a blind condition, a condition with disrupted proprioception, and a condition where both vision and proprioception were reliably available. To investigate the difference between encoding and storage phases of remembering proprioceptive information, rotation amplitude and recall delay were manipulated. The task was completed in a real testing room and in immersive virtual reality (IVR) simulations of the same environment. We found that proprioceptive accuracy is lower when vision is not available and that performance is generally less accurate in IVR. In reality conditions, the degree of rotation affected accuracy only in the blind condition, whereas in IVR, it caused more errors in both the blind condition and to a lesser degree when proprioception was disrupted. These results indicate an improvement in encoding own body location when vision and proprioception are optimally integrated. No reliable effect of delay was found.


Assuntos
Realidade Virtual , Humanos , Movimento (Física) , Propriocepção , Visão Ocular
9.
PLoS One ; 16(7): e0254514, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34265002

RESUMO

The present work explores the distinctive contribution of motor planning and control to human reaching movements. In particular, the movements were triggered by the selection of a prepotent response (Dominant) or, instead, by the inhibition of the prepotent response, which required the selection of an alternative one (Non-dominant). To this end, we adapted a Go/No-Go task to investigate both the dominant and non-dominant movements of a cohort of 19 adults, utilizing kinematic measures to discriminate between the planning and control components of the two actions. In this experiment, a low-cost, easy to use, 3-axis wrist-worn accelerometer was put to good use to obtain raw acceleration data and to compute and break down its velocity components. The values obtained with this task indicate that with the inhibition of a prepotent response, the selection and execution of the alternative one yields both a longer reaction time and movement duration. Moreover, the peak velocity occurred later in time in the non-dominant response with respect to the dominant response, revealing that participants tended to indulge more in motor planning than in adjusting their movement along the way. Finally, comparing such results to the findings obtained by other means in the literature, we discuss the feasibility of an accelerometer-based analysis to disentangle distinctive cognitive mechanisms of human movements.


Assuntos
Movimento , Adulto , Fenômenos Biomecânicos , Cognição , Humanos , Desempenho Psicomotor , Tempo de Reação , Articulação do Punho
10.
Front Psychol ; 12: 708229, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322072

RESUMO

Atypical sensorimotor developmental trajectories greatly contribute to the profound heterogeneity that characterizes Autism Spectrum Disorders (ASD). Individuals with ASD manifest deviations in sensorimotor processing with early markers in the use of sensory information coming from both the external world and the body, as well as motor difficulties. The cascading effect of these impairments on the later development of higher-order abilities (e.g., executive functions and social communication) underlines the need for interventions that focus on the remediation of sensorimotor integration skills. One of the promising technologies for such stimulation is Immersive Virtual Reality (IVR). In particular, head-mounted displays (HMDs) have unique features that fully immerse the user in virtual realities which disintegrate and otherwise manipulate multimodal information. The contribution of each individual sensory input and of multisensory integration to perception and motion can be evaluated and addressed according to a user's clinical needs. HMDs can therefore be used to create virtual environments aimed at improving people's sensorimotor functioning, with strong potential for individualization for users. Here we provide a narrative review of the sensorimotor atypicalities evidenced by children and adults with ASD, alongside some specific relevant features of IVR technology. We discuss how individuals with ASD may interact differently with IVR versus real environments on the basis of their specific atypical sensorimotor profiles and describe the unique potential of HMD-delivered immersive virtual environments to this end.

11.
Front Psychol ; 12: 795283, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087455

RESUMO

Humans are by nature social beings tuned to communicate and interact from the very beginning of their lives. The sense of touch represents the most direct and intimate channel of communication and a powerful means of connection between the self and the others. In our digital age, the development and diffusion of internet-based technologies and virtual environments offer new opportunities of communication overcoming physical distance. It however, happens that social interactions are often mediated, and the tactile aspects of communication are overlooked, thus diminishing the feeling of social presence, which may contribute to an increased sense of social disconnection and loneliness. The current manuscript aims to review the extant literature about the socio-affective dimension of touch and current advancements in interactive virtual environments in order to provide a new perspective on multisensory virtual communication. Specifically, we suggest that interpersonal affective touch might critically impact virtual social exchanges, promoting a sense of co-presence and social connection between individuals, possibly overcoming feelings of sensory loneliness. This topic of investigation will be of crucial relevance from a theoretical perspective aiming to understand how we integrate multisensory signals in processing and making sense of interpersonal exchanges, this is important in both typical and atypical populations. Moreover, it will pave the way to promising applications by exploring the possibility to use technical innovations to communicate more interactively in the case of people who suffer from social isolation and disconnection from others.

12.
Brain Sci ; 10(5)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365509

RESUMO

When learning and interacting with the world, people with Autism Spectrum Disorders (ASD) show compromised use of vision and enhanced reliance on body-based information. As this atypical profile is associated with motor and social difficulties, interventions could aim to reduce the potentially isolating reliance on the body and foster the use of visual information. To this end, head-mounted displays (HMDs) have unique features that enable the design of Immersive Virtual Realities (IVR) for manipulating and training sensorimotor processing. The present study assesses feasibility and offers some early insights from a new paradigm for exploring how children and adults with ASD interact with Reality and IVR when vision and proprioception are manipulated. Seven participants (five adults, two children) performed a self-turn task in two environments (Reality and IVR) for each of three sensory conditions (Only Proprioception, Only Vision, Vision + Proprioception) in a purpose-designed testing room and an HMD-simulated environment. The pilot indicates good feasibility of the paradigm. Preliminary data visualisation suggests the importance of considering inter-individual variability. The participants in this study who performed worse with Only Vision and better with Only Proprioception seemed to benefit from the use of IVR. Those who performed better with Only Vision and worse with Only Proprioception seemed to benefit from Reality. Therefore, we invite researchers and clinicians to consider that IVR may facilitate or impair individuals depending on their profiles.

13.
PLoS One ; 15(1): e0222253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31999710

RESUMO

Proprioceptive development relies on a variety of sensory inputs, among which vision is hugely dominant. Focusing on the developmental trajectory underpinning the integration of vision and proprioception, the present research explores how this integration is involved in interactions with Immersive Virtual Reality (IVR) by examining how proprioceptive accuracy is affected by Age, Perception, and Environment. Individuals from 4 to 43 years old completed a self-turning task which asked them to manually return to a previous location with different sensory modalities available in both IVR and reality. Results were interpreted from an exploratory perspective using Bayesian model comparison analysis, which allows the phenomena to be described using probabilistic statements rather than simplified reject/not-reject decisions. The most plausible model showed that 4-8-year-old children can generally be expected to make more proprioceptive errors than older children and adults. Across age groups, proprioceptive accuracy is higher when vision is available, and is disrupted in the visual environment provided by the IVR headset. We can conclude that proprioceptive accuracy mostly develops during the first eight years of life and that it relies largely on vision. Moreover, our findings indicate that this proprioceptive accuracy can be disrupted by the use of an IVR headset.


Assuntos
Propriocepção/fisiologia , Desempenho Psicomotor/fisiologia , Realidade Virtual , Visão Ocular/fisiologia , Adolescente , Adulto , Teorema de Bayes , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Percepção Visual , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...