Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 189, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347012

RESUMO

QUIN database integrates and organizes structural-geological information from published and unpublished sources to constrain deformation in seismotectonic studies. The initial release, QUIN1.0, comprised 3,339 Fault Striation Pairs, mapped on 445 sites exposed along the Quaternary faults of central Italy. The present Data Descriptor introduces the QUIN 2.0 release, which includes 4,297 Fault Striation Pairs on 738 Structural Sites from southern Italy. The newly investigated faults span ~500 km along the Apennines chain, with strikes transitioning from ~SE to ~SW and comprehensively details Fault Striation Pairs' location, attitude, kinematics, and deformation axes. Additionally, it offers a shapefile of the fault traces hosting the data. The QUIN 2.0 release offers a significant geographic extension to the QUIN 1.0, with comprehensive description of local geometric-kinematic complexities of the regional pattern. The QUIN data may be especially relevant for constraining intra-Apennine potential seismogenic deformation patterns, where earthquake data only offer scattered or incomplete information. QUIN's data will support studies aimed at enhancing geological understanding, hazard assessment and comprehension of fault rupture propagation and barriers.

2.
Sci Rep ; 12(1): 14597, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028518

RESUMO

How large earthquakes are triggered is a key question in Earth science, and the role played by fluid pressure seems to be crucial. Nevertheless, evaluation of involved fluid volumes is seldom investigated, if not unaccounted for. Moreover, fluid flow along fault zones is a driving factor for seismicity migration, episodic heat and chemical transport. Here we show that time repeated (4D) seismic tomography resolves changes of Vp and Vp/Vs during the Mw6.2 2009 L'Aquila normal faulting sequence, that indicate a post-failure fluid migration from hypocentral depths to the surface, with a volume estimated between 5 and 100 × 106 m3 rising at rates up to 100 m/day. This amount inferred by tomograms is surprisingly consistent with the about 50 × 106 m3 surplus water volume additionally measured at spring discharge, spread in time and space along the 700 km2-wide regional carbonate fractured aquifer. Fluids were pushed-up within a huge volume across the fault and expelled from the area of large coseismic slip. Such quantities of fluids liberated during earthquakes add unprecedented constraints to the discussion on the role of fluids during and possibly before earthquake, as well as to the potential impact on the pristine high-quality drinkable groundwater, possibly affecting the biodiversity of groundwater dependent ecosystems too.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...