Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Toxics ; 11(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37755776

RESUMO

Environmental pollution of megacities can cause early biological damage such as DNA strand breaks and micronuclei formation. Comet assay tail length (TL) reflects exposure in the uterus to high levels of air pollution, primarily ozone and air particles (PM10), including mothers' smoking habits during pregnancy, conditions which can lead to low birth weight. In this biomonitoring study, we evaluated basal DNA damage in the cord blood cells of newborn children from Mexico City. We found a correlation between DNA damage in mothers and their newborns, including various parameters of environmental exposure and complications during pregnancy, particularly respiratory difficulties, malformations, obstetric trauma, neuropathies, and nutritional deficiencies. Mothers living in the southern part of the city showed double DNA damage compared to those living in the northern part (TL 8.64 µm vs. 4.18 µm, p < 0.05). Additionally, mothers' DNA damage correlates with exposure to NOx (range 0.77-1.52 ppm) and PM10 (range 58.32-75.89 µg/m3), as well maternal age >29. These results highlight the sensitivity of the comet assay in identifying differential in utero exposure for newborns whose mothers were exposed during pregnancy. They also suggest the importance of antioxidants during pregnancy and the role of the placental barrier in protecting the newborn from the DNA-damaging effects of oxidative pollution.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35805621

RESUMO

Exposure to lead in environmental and occupational settings continues to be a serious public health problem. At environmentally relevant doses, two mechanisms may underlie lead exposition-induced genotoxicity, disruption of the redox balance and an interference with DNA repair systems. The aim of the study was to evaluate the ability of lead exposition to induce impaired function of Ape1 and its impact on DNA repair capacity of workers chronically exposed to lead in a battery recycling plant. Our study included 53 participants, 37 lead exposed workers and 16 non-lead exposed workers. Lead intoxication was characterized by high blood lead concentration, high lipid peroxidation and low activity of delta-aminolevulinic acid dehydratase (δ-ALAD). Relevantly, we found a loss of DNA repair capacity related with down-regulation of a set of specific DNA repair genes, showing specifically, for the first time, the role of Ape1 down regulation at transcriptional and protein levels in workers exposed to lead. Additionally, using a functional assay we found an impaired function of Ape1 that correlates with high blood lead concentration and lipid peroxidation. Taken together, these data suggest that occupational exposure to lead could decrease DNA repair capacity, inhibiting the function of Ape1, as well other repair genes through the regulation of the ZF-transcription factor, promoting the genomic instability.


Assuntos
Intoxicação por Chumbo , Exposição Ocupacional , Reparo do DNA , Humanos , Chumbo/toxicidade , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Sintase do Porfobilinogênio , Reciclagem
3.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328651

RESUMO

The repair of DNA damage is a crucial process for the correct maintenance of genetic information, thus, allowing the proper functioning of cells. Among the different types of lesions occurring in DNA, double-strand breaks (DSBs) are considered the most harmful type of lesion, which can result in significant loss of genetic information, leading to diseases, such as cancer. DSB repair occurs through two main mechanisms, called non-homologous end joining (NHEJ) and homologous recombination repair (HRR). There is evidence showing that miRNAs play an important role in the regulation of genes acting in NHEJ and HRR mechanisms, either through direct complementary binding to mRNA targets, thus, repressing translation, or by targeting other genes involved in the transcription and activity of DSB repair genes. Therefore, alteration of miRNA expression has an impact on the ability of cells to repair DSBs, which, in turn, affects cancer therapy sensitivity. This latter gives account of the importance of miRNAs as regulators of NHEJ and HRR and places them as a promising target to improve cancer therapy. Here, we review recent reports demonstrating an association between miRNAs and genes involved in NHEJ and HRR. We employed the Web of Science search query TS ("gene official symbol/gene aliases*" AND "miRNA/microRNA/miR-") and focused on articles published in the last decade, between 2010 and 2021. We also performed a data analysis to represent miRNA-mRNA validated interactions from TarBase v.8, in order to offer an updated overview about the role of miRNAs as regulators of DSB repair.


Assuntos
Quebras de DNA de Cadeia Dupla , MicroRNAs , DNA/genética , Reparo do DNA por Junção de Extremidades , Reparo do DNA/genética , MicroRNAs/genética , RNA Mensageiro , Reparo de DNA por Recombinação
4.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638889

RESUMO

The response to DNA damage is the mechanism that allows the interaction between stress signals, inflammatory secretions, DNA repair, and maintenance of cell and tissue homeostasis. Adipocyte dysfunction is the cellular trigger for various disease states such as insulin resistance, diabetes, and obesity, among many others. Previously, our group demonstrated that adipogenesis per se, from mesenchymal/stromal stem cells derived from human adipose tissue (hASCs), involves an accumulation of DNA damage and a gradual loss of the repair capacity of oxidative DNA damage. Therefore, our objective was to identify whether healthy adipocytes differentiated for the first time from hASCs, when receiving inflammatory signals induced with TNFα, were able to persistently activate the DNA Damage Response and thus trigger adipocyte dysfunction. We found that TNFα at similar levels circulating in obese humans induce a sustained response to DNA damage response as part of the Senescence-Associated Secretory Phenotype. This mechanism shows the impact of inflammatory environment early affect adipocyte function, independently of aging.


Assuntos
Adipócitos/metabolismo , Diferenciação Celular , Dano ao DNA , Fator de Necrose Tumoral alfa/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ensaio Cometa/métodos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
5.
Genes (Basel) ; 12(9)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34573315

RESUMO

Understanding the regulation of DNA repair mechanisms is of utmost importance to identify altered cellular processes that lead to diseases such as cancer through genomic instability. In this sense, miRNAs have shown a crucial role. Specifically, miR-27b-3 biogenesis has been shown to be induced in response to DNA damage, suggesting that this microRNA has a role in DNA repair. In this work, we show that the overexpression of miR-27b-3p reduces the ability of cells to repair DNA lesions, mainly double-stranded breaks (DSB), and causes the deregulation of genes involved in homologous recombination repair (HRR), base excision repair (BER), and the cell cycle. DNA damage was induced in BALB/c-3T3 cells, which overexpress miR-27b-3p, using xenobiotic agents with specific mechanisms of action that challenge different repair mechanisms to determine their reparative capacity. In addition, we evaluated the expression of 84 DNA damage signaling and repair genes and performed pathway enrichment analysis to identify altered cellular processes. Taken together, our results indicate that miR-27b-3p acts as a negative regulator of DNA repair when overexpressed.


Assuntos
Quebras de DNA de Cadeia Dupla
6.
Physiol Biochem Zool ; 93(5): 384-395, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32780628

RESUMO

AbstractIncreases in DNA degradation have been detected in numerous situations in which organisms are exposed to pollutants. However, outside of the ecotoxicological literature, few studies have investigated whether there exists important variation in DNA integrity in free-living, healthy animals. Using the alkaline version of the comet assay to estimate DNA integrity in blood samples, we aimed to evaluate whether DNA integrity during early life is associated with nestlings' age, body mass, within-brood status, and oxidative stress using nestlings from a wild population of spotless starlings (Sturnus unicolor) as a model. We found important levels of variation in DNA integrity, suggesting the possibility that DNA integrity may have implications for offspring fitness. DNA integrity was dependent on the developmental stage, being lower at hatching than at the end of the nestling period. DNA integrity was also negatively related to the levels of oxidative damage at hatching and positively associated with wing length at fledging. In addition, position within the size hierarchy of the brood at fledging explained differences in DNA integrity, with higher levels in core than in marginal nestlings. Finally, despite extensive within-individual variation along nestling's age, we found DNA integrity during early life to be moderately repeatable within broods. Hence, DNA integrity in early life appears to be mainly affected by environmental factors, such as natural stressors. Our results suggest that measuring the variation in DNA integrity may be a fruitful approach for the assessment of individual fitness in natural populations and can be applied to studies in developmental biology and ecology.


Assuntos
Envelhecimento , Ensaio Cometa/veterinária , Dano ao DNA/fisiologia , Estresse Oxidativo/fisiologia , Estorninhos/crescimento & desenvolvimento , Animais , Regulação da Expressão Gênica no Desenvolvimento , Estorninhos/genética
7.
PLoS One ; 15(1): e0221681, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31923208

RESUMO

DNA repair inhibition has been described as an essential event leading to the initiation of carcinogenesis. In a previous study, we observed that the exposure to metal mixture induces changes in the miR-nome of the cells that was correlated with the sub-expression of mRNA involved in processes and diseases associated with metal exposure. From this analysis, one of the miRNAs that shows changes in its expression is miR-222, which is overexpressed in various cancers associated with exposure to metals. In silico studies showed that a possible target for the microRNA-222 could be Rad 51c, a gene involved in the double-stranded DNA repair. We could appreciate that up-regulation of miR-222 reduces the expression both gene and as a protein expression of Rad51c by RT-PCR and immunoblot, respectively. A luciferase assay was performed to validate Rad51c as miR-222 target. Neutral comet assay was performed in order to evaluate DNA double-strand breaks under experimental conditions. Here, we demonstrate that miR-222 up-regulation, directly regulates Rad51c expression negatively, and impairs homologous recombination of double-strand break DNA repair during the initiation stage of cell transformation. This inhibition triggers morphological transformation in a two-stage Balb/c 3T3 cell assay, suggesting that this small RNA acts as an initiator of the carcinogenesis process.


Assuntos
Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/genética , MicroRNAs/genética , Neoplasias/genética , Células 3T3 , Animais , Simulação por Computador , DNA/efeitos dos fármacos , DNA/genética , Reparo do DNA/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Recombinação Homóloga/efeitos dos fármacos , Recombinação Homóloga/genética , Humanos , Metais/metabolismo , Camundongos
8.
Front Oncol ; 10: 582396, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425736

RESUMO

During tumor progression, cancer cells rewire their metabolism to face their bioenergetic demands. In recent years, microRNAs (miRNAs) have emerged as regulatory elements that inhibit the translation and stability of crucial mRNAs, some of them causing direct metabolic alterations in cancer. In this study, we investigated the relationship between miRNAs and their targets mRNAs that control metabolism, and how this fine-tuned regulation is diversified depending on the tumor stage. To do so, we implemented a paired analysis of RNA-seq and small RNA-seq in a breast cancer cell line (MCF7). The cell line was cultured in multicellular tumor spheroid (MCTS) and monoculture conditions. For MCTS, we selected two-time points during their development to recapitulate a proliferative and quiescent stage and contrast their miRNA and mRNA expression patterns associated with metabolism. As a result, we identified a set of new direct putative regulatory interactions between miRNAs and metabolic mRNAs representative for proliferative and quiescent stages. Notably, our study allows us to suggest that miR-3143 regulates the carbon metabolism by targeting hexokinase-2. Also, we found that the overexpression of several miRNAs could directly overturn the expression of mRNAs that control glycerophospholipid and N-Glycan metabolism. While this set of miRNAs downregulates their expression in the quiescent stage, the same set is upregulated in proliferative stages. This last finding suggests an additional metabolic switch of the above mentioned metabolic pathways between the quiescent and proliferative stages. Our results contribute to a better understanding of how miRNAs modulate the metabolic landscape in breast cancer MCTS, which eventually will help to design new strategies to mitigate cancer phenotype.

9.
Cell Physiol Biochem ; 53(6): 910-920, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31769258

RESUMO

BACKGROUND/AIMS: Exposure to heavy metals is today a threat to society. The understanding of the molecular processes related to diseases related to exposure to metals mixture involve changes in the expression of microRNAs. Changes on microRNAs expression may alter several cellular processes, among them, DNA repair inhibition has been described as an essential event leading to the initiation of metal-induced carcinogenesis. METHODS: We evaluate the miR-222 expression in the two-stage transformation Balb/c 3T3 cell assay treated with As-Cd-Pb mixture. RESULTS: We could appreciate that up-regulation of miR-222 reduces the expression both gene and as a protein expression of Rad51c by RT-PCR and immunoblot, respectively. CONCLUSION: Here, we demonstrate that the mixture of As-Cd-Pb at epidemiologically relevant concentrations induces miR-222 up-regulation, which directly negatively regulates Rad51c expression and impairs homologous recombination of DNA during the initiation stage of cell transformation. This inhibition triggers morphological transformation in a murine two-stage Balb/c 3T3 cell assay, suggesting that this small RNA acts as an initiator of the carcinogenesis process.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Metais Pesados/farmacologia , MicroRNAs/metabolismo , Rad51 Recombinase/metabolismo , Animais , Antagomirs/metabolismo , Arsênio/química , Células 3T3 BALB , Cádmio/química , Sobrevivência Celular/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Proteínas de Ligação a DNA , Chumbo/química , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Rad51 Recombinase/genética
10.
Stem Cells Int ; 2018: 1615497, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405718

RESUMO

Human adipose-derived mesenchymal stem cells (hADMSCs) are recognized as a potential tool in cell tissue therapy because of their capacity to proliferate and differentiate in vitro. Several studies have addressed their use in regenerative medicine; however, little is known regarding their response to DNA damage and in particular to the reactive oxygen species (ROS) that are present in the microenvironment of implantation. In this study, we used the ROS-inducing agent hydrogen peroxide to explore the responses of (1) hADMSCs and (2) derived terminally differentiated adipocytes to oxidatively generated DNA damage. Using single cell gel electrophoresis, a dose-related increase was found for both DNA breaks and oxidative lesions (formamidopyrimidine DNA glycosylase-sensitive sites) upon exposure of hADMSCs to hydrogen peroxide. DNA repair capacity of hADMSCs was affected in cells exposed to 150 and 200 µM of hydrogen peroxide. An increase in the basal levels of DNA breaks and oxidative DNA lesions was observed through adipocyte differentiation. In addition, hydrogen peroxide-induced DNA damage increased through adipocyte differentiation; DNA repair capacity also decreased. This study is the first follow-up report on DNA repair capacity during adipogenic differentiation. Remarkably, in terminally differentiated adipocytes, DNA breakage repair is abolished while the repair of DNA oxidative lesions remains efficient.

11.
Genet Mol Biol ; 41(2): 475-487, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29870570

RESUMO

The importance of glutathione (GSH) in alternative cellular roles to the canonically proposed, were analyzed in a model unable to synthesize GSH. Gene expression analysis shows that the regulation of the actin cytoskeleton pathway is strongly impacted by the absence of GSH. To test this hypothesis, we evaluate the effect of GSH depletion via buthionine sulfoximine (5 and 12.5 mM) in human neuroblastoma MSN cells. In the present study, 70% of GSH reduction did not induce reactive oxygen species, lipoperoxidation, or cytotoxicity, which enabled us to evaluate the effect of glutathione in the absence of oxidative stress. The cells with decreasing GSH levels acquired morphology changes that depended on the actin cytoskeleton and not on tubulin. We evaluated the expression of three actin-binding proteins: thymosin ß4, profilin and gelsolin, showing a reduced expression, both at gene and protein levels at 24 hours of treatment; however, this suppression disappears after 48 hours of treatment. These changes were sufficient to trigger the co-localization of the three proteins towards cytoplasmic projections. Our data confirm that a decrease in GSH in the absence of oxidative stress can transiently inhibit the actin binding proteins and that this stimulus is sufficient to induce changes in cellular morphology via the actin cytoskeleton.

12.
Environ Sci Pollut Res Int ; 25(12): 12150-12158, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29455351

RESUMO

Several possible mechanisms have been examined to gain an understanding on the carcinogenic properties of lead, which include among others, mitogenesis, alteration of gene expression, oxidative damage, and inhibition of DNA repair. The aim of the present study was to explore if low concentrations of lead, relevant for human exposure, interfere with Ape1 function, a base excision repair enzyme, and its role in cell transformation in Balb/c-3T3. Lead acetate 5 and 30 µM induced APE1 mRNA and upregulation of protein expression. This increase in mRNA expression is consistent throughout the chronic exposure. Additionally, we also found an impaired function of Ape1 through molecular beacon-based assay. To evaluate the impact of lead on foci formation, a Balb/c-3T3 two-step transformation model was used. Balb/c-3T3 cells were pretreated 1 week with low concentrations of lead before induction of transformation with n-methyl-n-nitrosoguanidine (MNNG) (0.5 µg/mL) and 12-O-tetradecanoylphorbol-13-acetate (TPA) (0.1 µg/mL) (a classical two-step protocol). Morphological cell transformation increased in response to lead pretreatment that was paralleled with an increase in Ape1 mRNA and protein overexpression and an impairment of Ape1 activity and correlating with foci number. In addition, we found that lead pretreatment and MNNG (transformation initiator) increased DNA damage, determined by comet assay. Our data suggest that low lead concentrations (5, 30 µM) could play a facilitating role in cellular transformation, probably through the impaired function of housekeeping genes such as Ape1, leading to DNA damage accumulation and chromosomal instability, one of the most important hallmarks of cancer induced by chronic exposures.


Assuntos
Carcinógenos Ambientais/toxicidade , Transformação Celular Neoplásica/efeitos dos fármacos , Dano ao DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/biossíntese , Chumbo/toxicidade , Modelos Biológicos , Animais , Células 3T3 BALB , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Expressão Gênica/efeitos dos fármacos , Humanos , Metilnitronitrosoguanidina/farmacologia , Camundongos , Acetato de Tetradecanoilforbol/farmacologia
13.
Int J Biol Sci ; 14(1): 21-35, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29483822

RESUMO

Oxidative stress has been proposed as a risk factor for cervical cancer development. However, few studies have evaluated the redox state associated with human papillomavirus (HPV) infection. The aim of this work was to determine the role of the early expressed viral proteins E1, E2, E6 and E7 from HPV types 16 and 18 in the modulation of the redox state in an integral form. Therefore, generation of reactive oxygen species (ROS), concentration of reduced glutathione (GSH), levels and activity of the antioxidant enzymes catalase and superoxide dismutase (SOD) and deoxyribonucleic acid (DNA) damage, were analysed in epithelial cells ectopically expressing the viral proteins. Our research shows that E6 oncoproteins decreased GSH and catalase protein levels, as well as its enzymatic activity, which was associated with an increase in ROS production and DNA damage. In contrast, E7 oncoproteins increased GSH, as well as catalase protein levels and its activity, which correlated with a decrease in ROS without affecting DNA integrity. The co-expression of both E6 and E7 oncoproteins neutralized the effects that were independently observed for each of the viral proteins. Additionally, the combined expression of E1 and E2 proteins increased ROS levels with the subsequent increase in the marker for DNA damage phospho-histone 2AX (γH2AX). A decrease in GSH, as well as SOD2 levels and activity were also detected in the presence of E1 and E2, even though catalase activity increased. This study demonstrates that HPV early expressed proteins differentially modulate cellular redox state and DNA damage.


Assuntos
Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 18/metabolismo , Western Blotting , Catalase/genética , Catalase/metabolismo , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Dano ao DNA/genética , Dano ao DNA/fisiologia , Glutationa/genética , Glutationa/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Humanos , Oxirredução , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
Int J Nanomedicine ; 12: 7695-7707, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29089764

RESUMO

Carbon nanotubes (CNTs) have been a focus of attention due to their possible applications in medicine, by serving as scaffolds for cell growth and proliferation and improving mesenchymal cell transplantation and engraftment. The emphasis on the benefits of CNTs has been offset by the ample debate on the safety of nanotechnologies. In this study, we determine whether functionalized multiwalled CNTs (fMWCNTs) and functionalized oxygen-doped multiwalled CNTs (fCOxs) have toxic effects on rat mesenchymal stem cells (MSCs) in vitro by analyzing morphology and cell proliferation and, using in vivo models, whether they are able to transform MSCs in cancer cells or induce embryotoxicity. Our results demonstrate that there are statistically significant differences in cell proliferation and the cell cycle of MSCs in culture. We identified dramatic changes in cells that were treated with fMWCNTs. Our evaluation of the transformation to cancer cells and cytotoxicity process showed little effect. However, we found a severe embryotoxicity in chicken embryos that were treated with fMWCNTs, while fCOxs seem to exert cardioembryotoxicity and a discrete teratogenicity. Furthermore, it seems that the time of contact plays an important role during cell transformation and embryotoxicity. A single contact with fMWCNTs is not sufficient to transform cells in a short time; an exposure of fMWCNTs for 2 weeks led to cell transformation risk and cardioembryotoxicity effects.


Assuntos
Carcinógenos/toxicidade , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Testes de Toxicidade/métodos , Animais , Carcinógenos/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica , Células Cultivadas , Embrião de Galinha/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Nus , Oxigênio/química , Ratos
15.
Toxicol Ind Health ; 33(5): 443-453, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27777339

RESUMO

The aim of this study was to evaluate the genotoxicity of the herbicide diuron in the wing-spot test and a novel wing imaginal disk comet assay in Drosophila melanogaster. The wing-spot test was performed with standard (ST) and high-bioactivation (HB) crosses after providing chronic 48 h treatment to third instar larvae. A positive dose-response effect was observed in both crosses, but statistically reduced spot frequencies were registered for the HB cross compared with the ST. This latter finding suggests that metabolism differences play an important role in the genotoxic effect of diuron. To verify diuron's ability to produce DNA damage, a wing imaginal disk comet assay was performed after providing 24 h diuron treatment to ST and HB third instar larvae. DNA damage induced by the herbicide had a significantly positive dose-response effect even at very low concentrations in both strains. However, as noted for the wing-spot test, a significant difference between strains was not observed that could be related to the duration of exposure between both assays. A positive correlation between the comet assay and the wing-spot test was found with regard to diuron genotoxicity.


Assuntos
Dano ao DNA/efeitos dos fármacos , Diurona/toxicidade , Drosophila melanogaster , Herbicidas/toxicidade , Animais , Ensaio Cometa , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Feminino , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Masculino , Testes de Mutagenicidade , Asas de Animais/efeitos dos fármacos , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/patologia
16.
J Exp Biol ; 219(Pt 24): 3915-3926, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27802141

RESUMO

Oxidative stress has been suggested as one of the physiological mechanisms modulating reproductive effort, including investment in mate choice. Here, we evaluated whether oxidative stress influences breeding decisions by acting as a cost of or constraint on reproduction in the brown booby (Sula leucogaster), a long-lived seabird with prolonged biparental care. We found that during courtship, levels of lipid peroxidation (LP) of males and females were positively associated with gular skin color, a trait presumably used in mate choice, while levels of reactive oxygen species (ROS) were higher as laying approached and in early breeding pairs. Evidence of a constraining effect of oxidative stress for females was suggested by the fact that females with higher ROS during courtship laid smaller first eggs and had chicks with lower rates of body mass gain, and higher female LP was associated with lower offspring attendance time. No evidence of an oxidative cost of parental effort was found; from courtship to parental care, levels of ROS in males and females decreased, and changes in LP levels were non-significant. Finally, using a cross-fostering experiment we found that offspring ROS was unrelated to rearing and genetic parents' ROS. Interestingly, offspring LP was positively associated with the LP during courtship of both the rearing parents and the genetic father, suggesting that offspring LP might have both a genetic and an environmental component. Hence, in the brown booby, oxidative stress may be a cost of investment in reproductive traits before egg laying and constrain females' investment in eggs and parental care.


Assuntos
Animais Selvagens/fisiologia , Aves/fisiologia , Corte , Estresse Oxidativo , Reprodução/fisiologia , Animais , Animais Selvagens/crescimento & desenvolvimento , Aves/crescimento & desenvolvimento , Feminino , Modelos Lineares , Peroxidação de Lipídeos , Masculino , Pigmentação , Espécies Reativas de Oxigênio/metabolismo
17.
Arch Med Res ; 47(2): 78-88, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-27259382

RESUMO

BACKGROUND AND AIMS: Nuclear transcription factor kappa B (NF-κB) is associated with many types of refractory cancer. However, despite multiple strategies to treat cancer and novel target drugs, multidrug resistance still causes relapses. The best-characterized mechanism responsible for multidrug resistance involves the expression of the MDR-1 gene product, P-glycoprotein (P-gp). Because the direct inhibition of this protein is very toxic, other methods of multidrug resistance (MDR) regulation have been proposed. The MDR-1 promoter sequence contains a κB site, which is recognized by NF-κB. The aim of this work was to characterize whether NF-κB modulation changes the response of bone marrow-derived cells (BMDCs) to chemotherapy. RESULTS: We exposed BMDCs to etoposide and doxorubicin, two of the most used antineoplastic drugs. BMDCs presented high tolerance to these drugs, which correlated with high intrinsic P-gp activity and strong protein expression of NF-κB. To determine the mechanism behind the poor sensitivity of BMDCs to chemotherapy, we blocked the activity of the heterodimer protein NF-κB using the pharmacological inhibitor Bay 11-7085 and through the transfection of an adenovirus negative mutant of I kappa B alpha. The multidrug resistance phenotype of BMDCs was reversed by inhibiting the NF-κB pathway, and this change was accompanied by a decrease in P-gp activity. CONCLUSIONS: NF-κB is a possible target for improving the antineoplastic response.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , NF-kappa B/metabolismo , Células da Medula Óssea/metabolismo , Regulação para Baixo , Humanos , Mutação , Inibidor de NF-kappaB alfa/genética , NF-kappa B/antagonistas & inibidores , Nitrilas/farmacologia , Sulfonas/farmacologia
18.
Mutagenesis ; 31(4): 463-73, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26984302

RESUMO

Environmental pollutants are complex mixtures in which metals are ubiquitous. Metal mixtures of arsenic, cadmium and lead are present in the occupational environment and generate health effects such as cardiovascular, renal and cancer diseases. Cell transformation induced by metal mixtures that depend on reactive oxygen species (ROS) generation, cell viability maintenance and avoidance of senescence was previously reported by our group. The aim of the present study was to explore the role of a Obg-like ATPase1 (OLA1) in the cell transformation of BALB/c 3T3 A31-1-1 clonal cells induced by a metal mixture (2 µM NaAsO2, 2 µM CdCl2 and 5 µM Pb(C2H3O2)2 3H2O) through ROS generation. The interest in OLA1 is justified because this protein has been proposed to be a negative regulator of the cellular antioxidant response. Small interfering RNA (siRNA) was used to knockdown OLA1 before the initiation stage of the transformation assay. We evaluated (ROS) and OLA1 protein expression throughout the initiation and promotion stages of transformation. OLA1 knockdown modulated metal mixture-induced cell transformation more strongly when the metal mixture was an initiator stimulus than when it was a promoter. The ability of the metal mixture to initiate cell transformation was diminished by OLA1 knockdown, an effect that depended on intracellular ROS levels. The effect of OLA1 was synergistic with N-Acetyl-l-cysteine (NAC) co-treatment. Oxidative stress-associated transcription factors Egr1 and Smad were also down-regulated by the OLA1 knockdown, contributing to the rescue of metal mixture cell transformation.


Assuntos
Adenosina Trifosfatases/metabolismo , Arsênio/toxicidade , Cádmio/toxicidade , Transformação Celular Neoplásica/induzido quimicamente , Chumbo/toxicidade , Adenosina Trifosfatases/genética , Animais , Linhagem Celular , Transformação Celular Neoplásica/metabolismo , Poluentes Ambientais/toxicidade , Técnicas de Silenciamento de Genes , Camundongos , Estresse Oxidativo , RNA Interferente Pequeno
19.
Carcinogenesis ; 36 Suppl 1: S61-88, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106144

RESUMO

Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos Ambientais/efeitos adversos , Exposição Ambiental/efeitos adversos , Instabilidade Genômica/efeitos dos fármacos , Substâncias Perigosas/efeitos adversos , Neoplasias/induzido quimicamente , Neoplasias/etiologia , Animais , Humanos
20.
Front Genet ; 5: 386, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25506353

RESUMO

The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...