Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 40(2): 147-58, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18688039

RESUMO

The activation of transcription factor NF-kappaB is controlled by two main pathways: the classical canonical (RelA/p65-p50)- and the alternative noncanonical (RelB/p52)-NF-kappaB pathways. RelB has been shown to play a protective role in RelA/p65-mediated proinflammatory cytokine release in immune-inflammatory lymphoid cells. Increased infiltration of macrophages and lymphoid cells occurs in lungs of patients with chronic obstructive pulmonary disease, leading to abnormal inflammation. We hypothesized that RelB, and its signaling pathway, is differentially regulated in macrophages and B cells and in lung cells, leading to differential regulation of proinflammatory cytokines in response to cigarette smoke (CS). CS exposure increased the levels of RelB and NF-kappaB-inducing kinase associated with recruitment of RelB on promoters of the IL-6 and macrophage inflammatory protein-2 genes in mouse lung. Treatment of macrophage cell line, MonoMac6, with CS extract showed activation of RelB. In contrast, RelB was degraded by a proteasome-dependent mechanism in B lymphocytes (human Ramos, mouse WEHI-231, and primary mouse spleen B cells), suggesting that RelB is differentially regulated in lung inflammatory and lymphoid cells in response to CS exposure. Transient transfection of dominant negative IkappaB-kinase-alpha and double mutants of NF-kappaB-inducing kinase partially attenuated the CS extract-mediated loss of RelB in B cells and normalized the increased RelB level in macrophages. Taken together, these data suggest that RelB is differentially regulated in response to CS exposure in macrophages, B cells, and in lung cells by IkappaB-kinase-alpha-dependent mechanism. Rapid degradation of RelB signals for RelA/p65 activation and loss of its protective ability to suppress the proinflammatory cytokine release in lymphoid B cells.


Assuntos
Linfócitos B/metabolismo , Quinase I-kappa B/metabolismo , Pulmão/metabolismo , Fumar/efeitos adversos , Fator de Transcrição RelB/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Ligante de CD40/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/metabolismo , Linfotoxina-beta/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Pneumonia/etiologia , Pneumonia/metabolismo , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo
2.
Am J Respir Cell Mol Biol ; 38(6): 689-98, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18239189

RESUMO

Cigarette smoke (CS) induces abnormal and sustained lung inflammation; however, the molecular mechanism underlying sustained inflammation is not known. It is well known that activation of I kappaB kinase beta (IKK beta) leads to transient translocation of active NF-kappaB (RelA/p65-p50) in the nucleus and transcription of pro-inflammatory genes, whereas the role of IKK alpha in perpetuation of sustained inflammatory response is not known. We hypothesized that CS activates IKK alpha and causes histone acetylation on the promoters of pro-inflammatory genes, leading to sustained transcription of pro-inflammatory mediators in mouse lung in vivo and in human monocyte/macrophage cell line (MonoMac6) in vitro. CS exposure to C57BL/6J mice resulted in activation of IKK alpha, leading to phosphorylation of ser10 and acetylation of lys9 on histone H3 on the promoters of IL-6 and MIP-2 genes in mouse lung. The increased level of IKK alpha was associated with increased acetylation of lys310 RelA/p65 on pro-inflammatory gene promoters. The role of IKK alpha in CS-induced chromatin modification was confirmed by gain and loss of IKK alpha in MonoMac6 cells. Overexpression of IKK alpha was associated with augmentation of CS-induced pro-inflammatory effects, and phosphorylation of ser10 and acetylation of lys9 on histone H3, whereas transfection of IKK alpha dominant-negative mutants reduced CS-induced chromatin modification and pro-inflammatory cytokine release. Moreover, phosphorylation of ser276 and acetylation of lys310 of RelA/p65 was augmented in response to CS extract in MonoMac6 cells transfected with IKK alpha. Taken together, these data suggest that IKK alpha plays a key role in CS-induced pro-inflammatory gene transcription through phospho-acetylation of both RelA/p65 and histone H3.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , Quinase I-kappa B/metabolismo , Inflamação/genética , Pulmão/fisiologia , Fumar , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Linhagem Celular , Cromatina/química , Meios de Cultura/química , Epigênese Genética , Células Epiteliais/citologia , Células Epiteliais/imunologia , Histonas/imunologia , Humanos , Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Pulmão/citologia , Pulmão/imunologia , Macrófagos Alveolares/citologia , Macrófagos Alveolares/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , Regiões Promotoras Genéticas , Fumar/efeitos adversos , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...