Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 8(4)2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29601482

RESUMO

Medulloblastoma is the most common malignant paediatric brain tumour and current therapies often leave patients with severe neurological disabilities. Four major molecular groups of medulloblastoma have been identified (Wnt, Shh, Group 3 and Group 4), which include additional, recently defined subgroups with different prognosis and genetic characteristics. Lactate dehydrogenase A (LDHA) is a key enzyme in the aerobic glycolysis pathway, an abnormal metabolic pathway commonly observed in cancers, associated with tumour progression and metastasis. Studies indicate MBs have a glycolytic phenotype; however, LDHA has not yet been explored as a therapeutic target for medulloblastoma. LDHA expression was examined in medulloblastoma subgroups and cell lines. The effects of LDHA inhibition by oxamate or LDHA siRNA on medulloblastoma cell line metabolism, migration and proliferation were examined. LDHA was significantly overexpressed in Group 3 and Wnt MBs compared to non-neoplastic cerebellum. Furthermore, we found that oxamate significantly attenuated glycolysis, proliferation and motility in medulloblastoma cell lines, but LDHA siRNA did not. We established that aerobic glycolysis is a potential therapeutic target for medulloblastoma, but broader LDH inhibition (LDHA, B, and C) may be more appropriate than LDHA inhibition alone.

2.
Brain Pathol ; 26(1): 3-17, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26269128

RESUMO

There are over 120 types of brain tumor and approximately 45% of primary brain tumors are gliomas, of which glioblastoma multiforme (GBM) is the most common and aggressive with a median survival rate of 14 months. Despite progress in our knowledge, current therapies are unable to effectively combat primary brain tumors and patient survival remains poor. Tumor metabolism is important to consider in therapeutic approaches and is the focus of numerous research investigations. Lactate dehydrogenase A (LDHA) is a cytosolic enzyme, predominantly involved in anaerobic and aerobic glycolysis (the Warburg effect); however, it has multiple additional functions in non-neoplastic and neoplastic tissues, which are not commonly known or discussed. This review summarizes what is currently known about the function of LDHA and identifies areas that would benefit from further exploration. The current knowledge of the role of LDHA in the brain and its potential as a therapeutic target for brain tumors will also be highlighted. The Warburg effect appears to be universal in tumors, including primary brain tumors, and LDHA (because of its involvement with this process) has been identified as a potential therapeutic target. Currently, there are, however, no suitable LDHA inhibitors available for tumor therapies in the clinic.


Assuntos
Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/terapia , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/uso terapêutico , Animais , Neoplasias Encefálicas/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/uso terapêutico , L-Lactato Desidrogenase/genética , Lactato Desidrogenase 5
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...