Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139578

RESUMO

Over the years, deep reinforcement learning (DRL) has shown great potential in mapless autonomous robot navigation and path planning. These DRL methods rely on robots equipped with different light detection and range (LiDAR) sensors with a wide field of view (FOV) configuration to perceive their environment. These types of LiDAR sensors are expensive and are not suitable for small-scale applications. In this paper, we address the performance effect of the LiDAR sensor configuration in DRL models. Our focus is on avoiding static obstacles ahead. We propose a novel approach that determines an initial FOV by calculating an angle of view using the sensor's width and the minimum safe distance required between the robot and the obstacle. The beams returned within the FOV, the robot's velocities, the robot's orientation to the goal point, and the distance to the goal point are used as the input state to generate new velocity values as the output action of the DRL. The cost function of collision avoidance and path planning is defined as the reward of the DRL model. To verify the performance of the proposed method, we adjusted the proposed FOV by ±10° giving a narrower and wider FOV. These new FOVs are trained to obtain collision avoidance and path planning DRL models to validate the proposed method. Our experimental setup shows that the LiDAR configuration with the computed angle of view as its FOV performs best with a success rate of 98% and a lower time complexity of 0.25 m/s. Additionally, using a Husky Robot, we demonstrate the model's good performance and applicability in the real world.

2.
Sensors (Basel) ; 21(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884104

RESUMO

Many terminal sliding mode controllers (TSMCs) have been suggested to obtain exact tracking control of robotic manipulators in finite time. The ordinary method is based on TSMCs that secure trajectory tracking under the assumptions such as the known robot dynamic model and the determined upper boundary of uncertain components. Despite tracking errors that tend to zero in finite time, the weakness of TSMCs is chattering, slow convergence speed, and the need for the exact robot dynamic model. Few studies are handling the weakness of TSMCs by using the combination between TSMCs and finite-time observers. In this paper, we present a novel finite-time fault tolerance control (FTC) method for robotic manipulators. A finite-time fault detection observer (FTFDO) is proposed to estimate all uncertainties, external disturbances, and faults accurately and on time. From the estimated information of FTFDO, a novel finite-time FTC method is developed based on a new finite-time terminal sliding surface and a new finite-time reaching control law. Thanks to this approach, the proposed FTC method provides a fast convergence speed for both observation error and control error in finite time. The operation of the robot system is guaranteed with expected performance even in case of faults, including high tracking accuracy, small chattering behavior in control input signals, and fast transient response with the variation of disturbances, uncertainties, or faults. The stability and finite-time convergence of the proposed control system are verified that they are strictly guaranteed by Lyapunov theory and finite-time control theory. The simulation performance for a FARA robotic manipulator proves the proposed control theory's correctness and effectiveness.

3.
Sensors (Basel) ; 21(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34770391

RESUMO

In this paper, a robust observer-based control strategy for n-DOF uncertain robot manipulators with fixed-time stability was developed. The novel fixed-time nonsingular sliding mode surface enables control errors to converge to the equilibrium point quickly within fixed time without singularity. The development of the novel fixed-time disturbance observer based on a uniform robust exact differentiator also allows uncertain terms and exterior disturbances to be proactively addressed. The designed observer can accurately approximate uncertain terms within a fixed time and contribute to significant chattering reduction in the traditional sliding mode control. A robust observer-based control strategy was formulated, according to a combination of the fixed-time nonsingular terminal sliding mode control method and the designed observer, to yield global fixed time stability for n-DOF uncertain robot manipulators. The proposed controller proved definitively that it was able to obtain global stabilization in fixed time. The approximation capability of the proposed observer, the convergence of the proposed sliding surface, and the effectiveness of the proposed control strategy in fixed time were fully confirmed by simulation performance on an industrial robot manipulator.


Assuntos
Robótica , Simulação por Computador
4.
Sensors (Basel) ; 21(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499320

RESUMO

Underwater vehicles (UVs) are subjected to various environmental disturbances due to ocean currents, propulsion systems, and un-modeled disturbances. In practice, it is very challenging to design a control system to maintain UVs stayed at the desired static position permanently under these conditions. Therefore, in this study, a nonlinear dynamics and robust positioning control of the over-actuated autonomous underwater vehicle (AUV) under the effects of ocean current and model uncertainties are presented. First, a motion equation of the over-actuated AUV under the effects of ocean current disturbances is established, and a trajectory generation of the over-actuated AUV heading angle is constructed based on the line of sight (LOS) algorithm. Second, a dynamic positioning (DP) control system based on motion control and an allocation control is proposed. For this, motion control of the over-actuated AUV based on the dynamic sliding mode control (DSMC) theory is adopted to improve the system robustness under the effects of the ocean current and model uncertainties. In addition, the stability of the system is proved based on Lyapunov criteria. Then, using the generalized forces generated from the motion control module, two different methods for optimal allocation control module: the least square (LS) method and quadratic programming (QP) method are developed to distribute a proper thrust to each thruster of the over-actuated AUV. Simulation studies are conducted to examine the effectiveness and robustness of the proposed DP controller. The results show that the proposed DP controller using the QP algorithm provides higher stability with smaller steady-state error and stronger robustness.

5.
Sensors (Basel) ; 21(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401511

RESUMO

This paper presents a novel method for fusing information from multiple sensor systems for bearing fault diagnosis. In the proposed method, a convolutional neural network is exploited to handle multiple signal sources simultaneously. The most important finding of this paper is that a deep neural network with wide structure can extract automatically and efficiently discriminant features from multiple sensor signals simultaneously. The feature fusion process is integrated into the deep neural network as a layer of that network. Compared to single sensor cases and other fusion techniques, the proposed method achieves superior performance in experiments with actual bearing data.

6.
Sensors (Basel) ; 20(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560493

RESUMO

Bearing is one of the key components of a rotating machine. Hence, monitoring health condition of the bearing is of paramount importace. This paper develops a novel particle swarm optimization (PSO)-least squares wavelet support vector machine (PSO-LSWSVM) classifier, which is designed based on a combination between a PSO, a least squares procedure, and a new wavelet kernel function-based support vector machine (SVM), for bearing fault diagnosis. In this work, bearing fault classification is transformed into a pattern recognition problem, which consists of three stages of data processing. Firstly, a rich information dataset is built by extracting the features from the signals, which are decomposed by the nonlocal means (NLM) and empirical mode decomposition (EMD). Secondly, a minimum-redundancy maximum-relevance (mRMR) method is employed to determine a subset of feature that can provide an optimal performance. Thirdly, a novel classifier, namely LSWSVM, is proposed with the aid of a PSO, to provide higher classification accuracy. The key innovative science of this work is to propropose a new classifier with the aid of an new wavelet kernel type to increase the classification precision of bearing fault diagnosis. The merit features of the proposed approach are demonstrated based on a benchmark bearing dataset and a comprehensive comparison procedure.

7.
Sensors (Basel) ; 20(5)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121403

RESUMO

This paper focuses on motion analysis of a coupled unmanned surface vehicle (USV)-umbilical cable (UC)-unmanned underwater vehicle (UUV) system to investigate the interaction behavior between the vehicles and the UC in the ocean environment. For this, a new dynamic modeling method for investigating a multi-body dynamics system of this coupling system is employed. Firstly, the structure and hardware composition of the proposed system are presented. The USV and UUV are modeled as rigid-body vehicles, and the flexible UC is discretized using the catenary equation. In order to solve the nonlinear coupled dynamics of the vehicles and flexible UC, the fourth-order Runge-Kutta numerical method is implemented. In modeling the flexible UC dynamics, the shooting method is applied to solve a two-point boundary value problem of the catenary equation. The interaction between the UC and the USV-UUV system is investigated through numerical simulations in the time domain. Through the computer simulation, the behavior of the coupled USV-UC-UUV system is analyzed for three situations which can occur. In particular, variation of the UC forces and moments at the tow points and the configuration of the UC in the water are investigated.

8.
ISA Trans ; 96: 60-68, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31262510

RESUMO

In this work, a new robust controller is developed for robot manipulator based on an integrating between a novel self-tuning fuzzy proportional-integral-derivative (PID)-nonsingular fast terminal sliding mode control (STF-PID-NFTSM) and a time delay estimation (TDE). A sliding surface based on the PID-NFTSM is designed for robot manipulators to get multiple excited features such as faster transient response with finite time convergence, lower error at steady-state and chattering elimination. However, the system characteristics are hugely affected by the selection of the PID gains of the controller. In addition, the design of the controller requires an exact dynamics model of the robot manipulators. In order to obtain effective gains for the PID sliding surface, a fuzzy logic system is employed and in order to get an estimation of the unknown dynamics model, a TDE algorithm is developed. The innovative features of the proposed approach, i.e., STF-PID-NFTSM, is verified when comparing with other up-to-date advanced control techniques on a PUMA560 robot.

9.
ISA Trans ; 90: 30-40, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30732995

RESUMO

In this paper, a new control methodology is developed to enhance the tracking performance of fully actuated surface vessels based on an integrating between an adaptive integral sliding mode control (AISMC) and a disturbance observer (DO). First, an integral sliding mode control (ISMC), in which the backstepping control technique is used as the nominal controller, is designed for the system. The major features, i.e., benefits and drawbacks, of the ISMC are discussed thoroughly. Then, to enhance the tracking performance of the system, an adaptive technique and a new disturbance observer based on sliding mode technique are developed and integrated into the ISMC. The stability of the closed-loop system is proved based on Lyapunov criteria. Computer simulation is performed to illustrate the tracking performance of the proposed controller and compare with the existing controllers for the tracking control of a surface vessel. The simulation results demonstrate the superior performance of the proposed strategy.

10.
Vet Q ; 3(4): 164-168, 1981 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22040116
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...