Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(2): e55593, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23409003

RESUMO

A companion manuscript revealed that deletion of the Pseudomonas aeruginosa (Pae) PA1006 gene caused pleiotropic defects in metabolism including a loss of all nitrate reductase activities, biofilm maturation, and virulence. Herein, several complementary approaches indicate that PA1006 protein serves as a persulfide-modified protein that is critical for molybdenum homeostasis in Pae. Mutation of a highly conserved Cys22 to Ala or Ser resulted in a loss of PA1006 activity. Yeast-two-hybrid and a green-fluorescent protein fragment complementation assay (GFP-PFCA) in Pae itself revealed that PA1006 interacts with Pae PA3667/CsdA and PA3814/IscS Cys desulfurase enzymes. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) "top-down" analysis of PA1006 purified from Pae revealed that conserved Cys22 is post-translationally modified in vivo in the form a persulfide. Inductively-coupled-plasma (ICP)-MS analysis of ΔPA1006 mutant extracts revealed that the mutant cells contain significantly reduced levels of molybdenum compared to wild-type. GFP-PFCA also revealed that PA1006 interacts with several molybdenum cofactor (MoCo) biosynthesis proteins as well as nitrate reductase maturation factor NarJ and component NarH. These data indicate that a loss of PA1006 protein's persulfide sulfur and a reduced availability of molybdenum contribute to the phenotype of a ΔPA1006 mutant.


Assuntos
Proteínas de Bactérias/metabolismo , Homeostase , Molibdênio/metabolismo , Pseudomonas aeruginosa/metabolismo , Sulfetos/química , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Análise de Fourier , Espectrometria de Massas/métodos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Nitrato Redutase/metabolismo , Homologia de Sequência de Aminoácidos
2.
Can J Microbiol ; 55(10): 1133-44, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19935885

RESUMO

Nitrate serves as a terminal electron acceptor under anaerobic conditions in Pseudomonas aeruginosa. Reduction of nitrate to nitrite generates a transmembrane proton motive force allowing ATP synthesis and anaerobic growth. The inner membrane-bound nitrate reductase NarGHI is encoded within the narK1K2GHJI operon, and the periplasmic nitrate reductase NapAB is encoded within the napEFDABC operon. The roles of the 2 dissimilatory nitrate reductases in anaerobic growth, and the regulation of their expressions, were examined by use of a set of deletion mutants in P. aeruginosa PAO1. NarGHI mutants were unable to grow anaerobically, but plate cultures remained viable up to 120 h. In contrast, the nitrate sensor-response regulator mutant DeltanarXL displayed growth arrest initially, but resumed growth after 72 h and reached the early stationary phase in liquid culture after 120 h. Genetic, transcriptional, and biochemical studies demonstrated that anaerobic growth recovery by the NarXL mutant was the result of NapAB periplasmic nitrate reductase expression. A novel transcriptional start site for napEFDABC expression was identified in the NarXL mutant grown anaerobically. Furthermore, mutagenesis of a consensus NarL-binding site monomer upstream of the novel transcriptional start site restored anaerobic growth recovery in the NarXL mutant. The data suggest that during anaerobic growth of wild-type P. aeruginosa PAO1, the nitrate response regulator NarL directly represses expression of periplasmic nitrate reductase, while inducing maximal expression of membrane nitrate reductase.


Assuntos
Nitrato Redutase/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Anaerobiose , Sequência de Bases , Domínio Catalítico/genética , Membrana Celular/enzimologia , DNA Bacteriano/genética , Metabolismo Energético , Expressão Gênica , Genes Bacterianos , Mutagênese Sítio-Dirigida , Mutação , Nitrato Redutase/genética , Nitritos/metabolismo , Óperon , Periplasma/enzimologia , Pseudomonas aeruginosa/genética
3.
Infect Immun ; 77(10): 4446-54, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19651860

RESUMO

The nitrate dissimilation pathway is important for anaerobic growth in Pseudomonas aeruginosa. In addition, this pathway contributes to P. aeruginosa virulence by using the nematode Caenorhabditis elegans as a model host, as well as biofilm formation and motility. We used a set of nitrate dissimilation pathway mutants to evaluate the virulence of P. aeruginosa PA14 in a model of P. aeruginosa-phagocyte interaction by using the human monocytic cell line THP-1. Both membrane nitrate reductase and nitrite reductase enzyme complexes were important for cytotoxicity during the interaction of P. aeruginosa PA14 with THP-1 cells. Furthermore, deletion mutations in genes encoding membrane nitrate reductase (Delta narGH) and nitrite reductase (Delta nirS) produced defects in the expression of type III secretion system (T3SS) components, extracellular protease, and elastase. Interestingly, exotoxin A expression was unaffected in these mutants. Addition of exogenous nitric oxide (NO)-generating compounds to Delta nirS mutant cultures restored the production of T3SS phospholipase ExoU, whereas nitrite addition had no effect. These data suggest that NO generated via nitrite reductase NirS contributes to the regulation of expression of selected virulence factors in P. aeruginosa PA14.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Membrana Transportadoras/biossíntese , Monócitos/microbiologia , Nitrito Redutases/fisiologia , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/patogenicidade , Fatores de Virulência/fisiologia , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Sobrevivência Celular , Contagem de Colônia Microbiana , Deleção de Genes , Técnicas de Inativação de Genes , Humanos , Viabilidade Microbiana , Mutação , Nitrato Redutase/genética , Nitrato Redutase/fisiologia , Nitrito Redutases/genética , Pseudomonas aeruginosa/genética , Virulência , Fatores de Virulência/genética
4.
Infect Immun ; 75(8): 3780-90, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17526746

RESUMO

Infection by the bacterial opportunist Pseudomonas aeruginosa frequently assumes the form of a biofilm, requiring motility for biofilm formation and dispersal and an ability to grow in nutrient- and oxygen-limited environments. Anaerobic growth by P. aeruginosa is accomplished through the denitrification enzyme pathway that catalyzes the sequential reduction of nitrate to nitrogen gas. Mutants mutated in the two-component nitrate sensor-response regulator and in membrane nitrate reductase displayed altered motility and biofilm formation compared to wild-type P. aeruginosa PAO1. Analysis of additional nitrate dissimilation mutants demonstrated a second level of regulation in P. aeruginosa motility that is independent of nitrate sensor-response regulator function and is associated with nitric oxide production. Because motility and biofilm formation are important for P. aeruginosa pathogenicity, we examined the virulence of selected regulatory and structural gene mutants in the surrogate model host Caenorhabditis elegans. Interestingly, the membrane nitrate reductase mutant was avirulent in C. elegans, while nitrate sensor-response regulator mutants were fully virulent. The data demonstrate that nitrate sensing, response regulation, and metabolism are linked directly to factors important in P. aeruginosa pathogenesis.


Assuntos
Biofilmes/crescimento & desenvolvimento , Caenorhabditis elegans/microbiologia , Locomoção , Nitratos/metabolismo , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Deleção de Genes , Glicolipídeos/metabolismo , Nitrato Redutase/genética , Óxido Nítrico/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...