Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(9): 3341-3349, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36802658

RESUMO

For the first time, low trace-level removal of perfluorooctanesulfonic acid (PFOS), i.e., 20-500 µg/L (ppb), from aqueous solutions using zeolitic imidazolate framework-8 (ZIF-8)-coated copper sheet (ZIF-8@Cu) composite is reported here. In comparison with different commercial activated carbon (AC) and all-silica zeolites, the composite showed the highest removal rate of 98%, which remained consistent over a wide range of concentrations. Additionally, no adsorbent leaching from the composite was noticed, which eradicated pre-analysis steps such as filtration and centrifugation, unless needed for other adsorbents studied here. The composite displayed fast uptake with saturation reaching within 4 h, irrespective of the initial concentration. However, the morphological and structural characterization revealed surface degradation of ZIF-8 crystals, along with a decline in the crystal size. The adsorption of PFOS on ZIF-8 crystals was linked to chemisorption, as the surface degradation surges with an increase in PFOS concentration or with cyclic exposure at low concentrations. Methanol seemingly removed surface debris (partially), thus providing access to ZIF-8 beneath the surface debris. Overall, the findings demonstrate that at low trace ppb-level PFOS concentrations ZIF-8 can be considered as a possible candidate for PFOS removal, even though it suffers slow surface degradation, it also removes efficiently PFOS molecules from aqueous solutions.

2.
Dalton Trans ; 45(10): 4416-30, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26885972

RESUMO

Various metal-organic framework (MOFs) adsorbents show peculiar adsorption behaviour as they can adopt different crystal phases, each phase with its own adsorption characteristics. Besides external stimuli such as temperature or light, different species of guest adsorbate can trigger a transition (breathing) of the host structure at a different pressure. Such phase transitions also occur during dynamic separations on a packed bed of adsorbent, where the concentrations of the adsorbates vary throughout axial column distance and time. This work presents a general strategy to model the adsorption behavior of such phase changing adsorbents during column separations and focuses on remarkable model predictions for pure components and binary mixtures in diluted and non-diluted conditions. During binary breakthrough experiments, the behaviour of flexible adsorbents is quite complex. A succession of complete or even partial phase transformations (resulting in phase coexistence) can occur during the adsorption process. A variety of unusual breakthrough profiles is observed for diluted binary mixtures. Simulations reveal at least five types of breakthrough profiles to emerge. The occurrence of these cases can be rationalized by the hodograph technique, combined with the phase diagram of the adsorbent. The remarkable experimental breakthrough profiles observed for ortho-xylene/ethylbenzene (diluted) and CO2/CH4 (non-diluted) separation on the flexible MIL-53 framework can be rationalized by application of the proposed model strategy.

4.
Langmuir ; 31(18): 5063-70, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25905988

RESUMO

COMOC-2, a flexible vanadium-containing metal-organic framework, was investigated for its adsorption and separation properties of light hydrocarbons. COMOC-2 is an extended version of the MIL-47 framework with 4,4'-biphenyldicarboxylic acid linkers instead of terephthalic acid. Adsorption isotherms of methane to propane, ethylene, and propylene were determined with a gravimetric uptake technique at temperatures between 281 and 303 K. A pronounced breathing effect was observed (in contrast to the more rigid MIL-47 framework) in which the adsorption capacity increases by more than a factor of 2 at a given breathing pressure. The breathing pressure decreases with increasing hydrocarbon molecular weight. The typical two-step isotherms are nearly identical for alkanes and alkenes, in accordance with the nonpolar nature of the material. Binary isotherms of ethane and propane were also measured with the gravimetric uptake technique at different temperatures and total pressures. The mixture isotherms and breathing transition pressures were predicted by relying on the osmotic framework adsorbed solution theory (OFAST). Finally, the separation potential of COMOC-2 for ethane/propane mixtures was looked into using breakthrough experiments for different compositions and different pressures.

5.
Langmuir ; 30(26): 7878-83, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24914819

RESUMO

Due to the combination of metal ions and organic linkers and the presence of different types of cages and channels, metal-organic frameworks often possess a large structural and chemical heterogeneity, complicating their adsorption behavior, especially for polar-apolar adsorbate mixtures. By allocating isotherms to individual subunits in the structure, the ideal adsorbed solution theory (IAST) can be adjusted to cope with this heterogeneity. The binary adsorption of methanol and n-hexane on HKUST-1 is analyzed using this segregated IAST (SIAST) approach and offers a significant improvement over the standard IAST model predictions. It identifies the various HKUST-1 cages to have a pronounced polar or apolar adsorptive behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...