Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 302: 122298, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37713762

RESUMO

The success of mRNA-based vaccines during the Covid-19 pandemic has highlighted the value of this new platform for vaccine development against infectious disease. However, the CD8+ T cell response remains modest with mRNA vaccines, and these do not induce mucosal immunity, which would be needed to prevent viral spread in the healthy population. To address this drawback, we developed a dendritic cell targeting mucosal vaccination vector, the homopentameric STxB. Here, we describe the highly efficient chemical synthesis of the protein, and its in vitro folding. This straightforward preparation led to a synthetic delivery tool whose biophysical and intracellular trafficking characteristics were largely indistinguishable from recombinant STxB. The chemical approach allowed for the generation of new variants with bioorthogonal handles. Selected variants were chemically coupled to several types of antigens derived from the mucosal viruses SARS-CoV-2 and type 16 human papillomavirus. Upon intranasal administration in mice, mucosal immunity, including resident memory CD8+ T cells and IgA antibodies was induced against these antigens. Our study thereby identifies a novel synthetic antigen delivery tool for mucosal vaccination with an unmatched potential to respond to an urgent medical need.


Assuntos
Linfócitos T CD8-Positivos , Pandemias , Camundongos , Humanos , Animais , Vacinação , Vacinas Sintéticas , Antígenos , Anticorpos Antivirais
2.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768653

RESUMO

The renin-angiotensin system (RAS) is one of the main regulatory systems of cardiovascular homeostasis. It is mainly composed of angiotensin-converting enzyme (ACE) and angiotensin II receptors AT1 and AT2. ACE and AT1 are targets of choice for the treatment of hypertension, whereas the AT2 receptor is still not exploited due to the lack of knowledge of its physiological properties. Peptide toxins from venoms display multiple biological functions associated with varied chemical and structural properties. If Brazilian viper toxins have been described to inhibit ACE, no animal toxin is known to act on AT1/AT2 receptors. We screened a library of toxins on angiotensin II receptors with a radioligand competition binding assay. Functional characterization of the selected toxin was conducted by measuring second messenger production, G-protein activation and ß-arrestin 2 recruitment using bioluminescence resonance energy transfer (BRET) based biosensors. We identified one original toxin, A-CTX-cMila, which is a 7-residues cyclic peptide from Conus miliaris with no homology sequence with known angiotensin peptides nor identified toxins, displaying a 100-fold selectivity for AT1 over AT2. This toxin shows a competitive antagonism mode of action on AT1, blocking Gαq, Gαi3, GαoA, ß-arrestin 2 pathways and ERK1/2 activation. These results describe the first animal toxin active on angiotensin II receptors.


Assuntos
Hipertensão , Receptor Tipo 1 de Angiotensina , Humanos , Angiotensina II/metabolismo , Antagonistas de Receptores de Angiotensina , beta-Arrestina 2/metabolismo , Peptídeos/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina/fisiologia , Animais
3.
Molecules ; 27(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364460

RESUMO

Improved methodological tools to hasten antimalarial drug discovery remain of interest, especially when considering natural products as a source of drug candidates. We propose a biodereplication method combining the classical dereplication approach with the early detection of potential antiplasmodial compounds in crude extracts. Heme binding is used as a surrogate of the antiplasmodial activity and is monitored by mass spectrometry in a biomimetic assay. Molecular networking and automated annotation of targeted mass through data mining were followed by mass-guided compound isolation by taking advantage of the versatility and finely tunable selectivity offered by centrifugal partition chromatography. This biodereplication workflow was applied to an ethanolic extract of the Amazonian medicinal plant Piper coruscans Kunth (Piperaceae) showing an IC50 of 1.36 µg/mL on the 3D7 Plasmodium falciparum strain. It resulted in the isolation of twelve compounds designated as potential antiplasmodial compounds by the biodereplication workflow. Two chalcones, aurentiacin (1) and cardamonin (3), with IC50 values of 2.25 and 5.5 µM, respectively, can be considered to bear the antiplasmodial activity of the extract, with the latter not relying on a heme-binding mechanism. This biodereplication method constitutes a rapid, efficient, and robust technique to identify potential antimalarial compounds in complex extracts such as plant extracts.


Assuntos
Antimaláricos , Piper , Plantas Medicinais , Plantas Medicinais/química , Antimaláricos/química , Folhas de Planta/química , Plasmodium falciparum , Extratos Vegetais/química , Verduras , Heme
4.
J Med Chem ; 65(18): 12084-12094, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36063022

RESUMO

The melanocortin 4 receptor (MC4R) plays a role in energy homeostasis and represents a target for treating energy balance disorders. For decades, synthetic ligands have been derived from MC4R endogenous agonists and antagonists, such as setmelanotide used to treat rare forms of genetic obesity. Recently, animal venoms have demonstrated their capacity to provide melanocortin ligands with toxins from a scorpion and a spider. Here, we described a cone snail toxin, N-CTX-Ltg1a, with a nanomolar affinity for hMC4R but unrelated to any known toxins or melanocortin ligands. We then derived from the conotoxin the linear peptide HT1-0, a competitive antagonist of Gs, G15, and ß-arrestin2 pathways with a low nanomolar affinity for hMC4R. Similar to endogenous ligands, HT1-0 needs hydrophobic and basic residues to bind hMC4R. Altogether, it represents the first venom-derived peptide of high affinity on MC4R and paves the way for the development of new MC4R antagonists.


Assuntos
Conotoxinas , Receptor Tipo 4 de Melanocortina , Sequência de Aminoácidos , Animais , Conotoxinas/farmacologia , Ligantes , Melanocortinas , Caramujos/metabolismo
5.
J Med Case Rep ; 16(1): 314, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35989318

RESUMO

BACKGROUND: Urticarial vasculitis is a clinicopathologic entity defined by recurrent episodes of urticarial lesions that persist > 24 hours and demonstrate the histopathologic features of leukocytoclastic vasculitis. The most important prognostic feature is the presence of normo- or hypocomplementemia. In the latter, patients are much more likely to have systemic manifestations. Urticarial vasculitis is most often idiopathic, but it can arise in association with autoimmune connective diseases, cryoglobulinemia, infections, medications, and hematologic malignancies. CASE PRESENTATION: We present the case of a 61-year-old Caucasian woman with a skin eruption that consisted of erythematous plaques on the trunk and limbs that lasted > 24 hours but were asymptomatic. The skin eruption had an acute onset and persisted for 3 months upon initial presentation in our dermatology department. A punch biopsy showed signs of a leukocytoclastic vasculitis in the superficial dermis. On laboratory examination, signs of activation of the complement system were found with low complement C3, C4, and C1q, and with a high anti-C1q antibody titer. The clinical, histological, and lab results fit the diagnosis of hypocomplementemic urticarial vasculitis. There was also a positive antinuclear factor with elevated U1 small nuclear ribonucleoprotein and high double-stranded DNA determined by Farr method. On urinalysis, marked proteinuria and massive hematuria were found. Kidney biopsy showed focal crescentic and focal mesangial type of glomerular damage with a full-blown positivity of immunoglobulin A, immunoglobulin G, and C1q, leading to lupus nephritis class III-A (according to the International Society of Nephrology/Renal Pathology Society 2003 classification of lupus nephritis). The patient was treated with hydroxychloroquine, corticosteroids, and low-dose intravenous cyclophosphamide (Euro-Lupus regimen) as remission-inducing agent, followed by azathioprine as remission-maintaining agent. This treatment regimen gave good results, with total clearance of the skin lesions and remission of the lupus nephritis. CONCLUSION: Clinicopathologic recognition of urticarial vasculitis with correct screening for extracutaneous disease can lead to early diagnosis of serious organ involvement and thereby improve prognosis for the patient.


Assuntos
Nefrite Lúpica , Urticária , Vasculite Leucocitoclástica Cutânea , Diagnóstico Precoce , Feminino , Humanos , Nefrite Lúpica/complicações , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/tratamento farmacológico , Pessoa de Meia-Idade , Urticária/diagnóstico , Urticária/tratamento farmacológico , Vasculite Leucocitoclástica Cutânea/diagnóstico , Vasculite Leucocitoclástica Cutânea/tratamento farmacológico
6.
Front Mol Biosci ; 9: 811365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198603

RESUMO

Peptide toxins from venoms have undergone a long evolutionary process allowing host defense or prey capture and making them highly selective and potent for their target. This has resulted in the emergence of a large panel of toxins from a wide diversity of species, with varied structures and multiple associated biological functions. In this way, animal toxins constitute an inexhaustible reservoir of druggable molecules due to their interesting pharmacological properties. One of the most interesting classes of therapeutic targets is the G-protein coupled receptors (GPCRs). GPCRs represent the largest family of membrane receptors in mammals with approximately 800 different members. They are involved in almost all biological functions and are the target of almost 30% of drugs currently on the market. Given the interest of GPCRs in the therapeutic field, the study of toxins that can interact with and modulate their activity with the purpose of drug development is of particular importance. The present review focuses on toxins targeting GPCRs, including peptide-interacting receptors or aminergic receptors, with a particular focus on structural aspects and, when relevant, on potential medical applications. The toxins described here exhibit a great diversity in size, from 10 to 80 amino acids long, in disulfide bridges, from none to five, and belong to a large panel of structural scaffolds. Particular toxin structures developed here include inhibitory cystine knot (ICK), three-finger fold, and Kunitz-type toxins. We summarize current knowledge on the structural and functional diversity of toxins interacting with GPCRs, concerning first the agonist-mimicking toxins that act as endogenous agonists targeting the corresponding receptor, and second the toxins that differ structurally from natural agonists and which display agonist, antagonist, or allosteric properties.

7.
J Ethnopharmacol ; 264: 113262, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32818574

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In the Peruvian Amazon as in the tropical countries of South America, the use of medicinal Piper species (cordoncillos) is common practice, particularly against symptoms of infection by protozoal parasites. However, there is few documented information about the practical aspects of their use and few scientific validation. The starting point of this work was a set of interviews of people living in six rural communities from the Peruvian Amazon (Alto Amazonas Province) about their uses of plants from Piper genus: one community of Amerindian native people (Shawi community) and five communities of mestizos. Infections caused by parasitic protozoa take a huge toll on public health in the Amazonian communities, who partly fight it using traditional remedies. Validation of these traditional practices contributes to public health care efficiency and may help to identify new antiprotozoal compounds. AIMS OF STUDY: To record and validate the use of medicinal Piper species by rural people of Alto Amazonas Province (Peru) and annotate active compounds using a correlation study and a data mining approach. MATERIALS AND METHODS: Rural communities were interviewed about traditional medication against parasite infections with medicinal Piper species. Ethnopharmacological surveys were undertaken in five mestizo villages, namely: Nueva Arica, Shucushuyacu, Parinari, Lagunas and Esperanza, and one Shawi community (Balsapuerto village). All communities belong to the Alto Amazonas Province (Loreto region, Peru). Seventeen Piper species were collected according to their traditional use for the treatment of parasitic diseases, 35 extracts (leaves or leaves and stems) were tested in vitro on P. falciparum (3D7 chloroquine-sensitive strain and W2 chloroquine-resistant strain), Leishmania donovani LV9 strain and Trypanosoma brucei gambiense. Assessments were performed on HUVEC cells and RAW 264.7 macrophages. The annotation of active compounds was realized by metabolomic analysis and molecular networking approach. RESULTS: Nine extracts were active (IC50 ≤ 10 µg/mL) on 3D7 P. falciparum and only one on W2 P. falciparum, six on L. donovani (axenic and intramacrophagic amastigotes) and seven on Trypanosoma brucei gambiense. Only one extract was active on all three parasites (P. lineatum). After metabolomic analyses and annotation of compounds active on Leishmania, P. strigosum and P. pseudoarboreum were considered as potential sources of leishmanicidal compounds. CONCLUSIONS: This ethnopharmacological study and the associated in vitro bioassays corroborated the relevance of use of Piper species in the Amazonian traditional medicine, especially in Peru. A series of Piper species with few previously available phytochemical data have good antiprotozoal activity and could be a starting point for subsequent promising work. Metabolomic approach appears to be a smart, quick but still limited methodology to identify compounds with high probability of biological activity.


Assuntos
Antiprotozoários/metabolismo , Etnofarmacologia/métodos , Medicina Tradicional/métodos , Metabolômica/métodos , Piper/metabolismo , Extratos Vegetais/metabolismo , Animais , Antimaláricos/isolamento & purificação , Antimaláricos/metabolismo , Antimaláricos/uso terapêutico , Antiprotozoários/isolamento & purificação , Antiprotozoários/uso terapêutico , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/metabolismo , Mesocricetus , Camundongos , Peru/etnologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Células RAW 264.7 , Inquéritos e Questionários
8.
Molecules ; 25(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456156

RESUMO

Alzheimer's disease (AD) represents a progressive amyloidogenic disorder whose advancement is widely recognized to be connected to amyloid-ß peptides and Tau aggregation. However, several other processes likely contribute to the development of AD and some of them might be related to protein-protein interactions. Amyloid aggregates usually contain not only single type of amyloid protein, but also other type of proteins and this phenomenon can be rationally explained by the process of protein cross-seeding and co-assembly. Amyloid cross-interaction is ubiquitous in amyloid fibril formation and so a better knowledge of the amyloid interactome could help to further understand the mechanisms of amyloid related diseases. In this review, we discuss about the cross-interactions of amyloid-ß peptides, and in particular Aß1-42, with other amyloids, which have been presented either as integrated part of Aß neurotoxicity process (such as Tau) or conversely with a preventive role in AD pathogenesis by directly binding to Aß (such as transthyretin, cystatin C and apolipoprotein A1). Particularly, we will focus on all the possible therapeutic strategies aiming to rescue the Aß toxicity by taking inspiration from these protein-protein interactions.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Cistatina C/genética , Cistatina C/metabolismo , Humanos , Fragmentos de Peptídeos/genética , Pré-Albumina/genética , Pré-Albumina/metabolismo , Mapas de Interação de Proteínas/genética , Proteínas tau/genética , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...