Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Prog ; 34(4): 1006-1018, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29693326

RESUMO

The application of mechanistic models for chromatography requires accurate model parameters. Especially for complex feedstocks such as a clarified cell harvest, this can still be an obstacle limiting the use of mechanistic models. Another commonly encountered obstacle is a limited amount of sample material and time to determine all needed parameters. Therefore, this study aimed at implementing an approach on a robotic liquid handling system that starts directly with a complex feedstock containing a monoclonal antibody. The approach was tested by comparing independent experimental data sets with predictions generated by the mechanistic model using all parameters determined in this study. An excellent agreement between prediction and experimental data was found verifying the approach. Thus, it can be concluded that RoboColumns with a bed volume of 200 µL can well be used to determine isotherm parameters for predictions of larger scale columns. Overall, this approach offers a new way to determine crucial model input parameters for mechanistic modelling of chromatography for complex biological feedstocks. © 2018 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:1006-1018, 2018.


Assuntos
Biotecnologia/métodos , Cromatografia/métodos , Modelos Teóricos
2.
Biotechnol Prog ; 33(3): 696-707, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28054462

RESUMO

Downstream process development is a major area of importance within the field of bioengineering. During the design of such a downstream process, important decisions have to be made regarding the type of unit operations as well as their sequence and their operating conditions. Current computational approaches addressing these issues either show a high level of simplification or struggle with computational speed. Therefore, this article presents a new approach that combines detailed mechanistic models and speed-enhancing artificial neural networks. This approach was able to simultaneously optimize a process with three different chromatographic columns toward yield with a minimum purity of 99.9%. The addition of artificial neural networks greatly accelerated this optimization. Due to high computational speed, the approach is easily extendable to include more unit operations. Therefore, it can be of great help in the acceleration of downstream process development. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:696-707, 2017.


Assuntos
Redes Neurais de Computação , Cromatografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA