Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (116)2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27768077

RESUMO

Secondary stem growth in trees and associated wood formation are significant both from biological and commercial perspectives. However, relatively little is known about the molecular control that governs their development. This is in part due to physical, resource and time limitations often associated with the study of secondary growth processes. A number of in vitro techniques have been used involving either plant part or whole plant system in both woody and non-woody plant species. However, questions about their applicability for the study of secondary stem growth processes, the recalcitrance of certain species and labor intensity are often prohibitive for medium to high throughput applications. Also, when looking at secondary stem development and wood formation the specific traits under investigation might only become measurable late in a tree's lifecycle after several years of growth. In addressing these challenges alternative in vivo protocols have been developed, named Induced Somatic Sector Analysis, which involve the creation of transgenic somatic tissue sectors directly in the plant's secondary stem. The aim of this protocol is to provide an efficient, easy and relatively fast means to create transgenic secondary plant tissue for gene and promoter functional characterization that can be utilized in a range of tree species. Results presented here show that transgenic secondary stem sectors can be created in all live tissues and cell types in secondary stems of a variety of tree species and that wood morphological traits as well as promoter expression patterns in secondary stems can be readily assessed facilitating medium to high throughput functional characterization.


Assuntos
Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Árvores , Madeira , Sequenciamento de Nucleotídeos em Larga Escala , Caules de Planta
2.
Funct Plant Biol ; 33(2): 133-139, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32689220

RESUMO

In an attempt to devise a method for the rapid creation of somatic transgenic wood sectors of sufficient size that would allow us to detect and analyse altered wood characteristics within them, we have explored the manual wounding and subsequent infection with Agrobacterium of dormant lateral buds in poplar. Following treatment and transformation with a 35S-GUS construct, frequent stable transformation was found in the form of distinct and specific GUS staining patterns in the outer cortex, cambial region (including primary and secondary xylem and phloem) and pith. Sector frequency and size were consistent with anatomical features of dormant lateral buds at the time of manual wounding and Agrobacterium-infection. The suitability of somatic sector analysis for functional genomic studies as well as for studies investigating pattern formation and the developmental fate of various cell-types within poplar stems is discussed.

3.
Funct Plant Biol ; 33(7): 629-638, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32689272

RESUMO

Large-scale functional analysis of genes and transgenes suspected to be involved in wood development in trees is hindered by long generation times, low transformation and regeneration efficiencies and difficulties with phenotypic assessment of traits, especially those that appear late in a tree's development. To avoid such obstacles many researchers have turned to model plants such as Arabidopsis thaliana (L.) Heynh., Zinnia elegans Jacq. and Nicotiana ssp., or have focused their attention on in vitro wood formation systems or in vivo approaches targeting primary meristems for transformation. Complementing such efforts, we report the use of Agrobacterium to introduce transgenes directly into cambial cells of glasshouse-grown trees in order to create transgenic somatic tissue sectors. These sectors are suitable for phenotypic evaluation and analysis of target gene function. In our experiments the wood formation zone containing the cambium of Eucalyptus, Populus and Pinus species of varying age was inoculated with Agrobacterium containing a CaMV 35S::GUS construct. Following an initial wound response, frequent and stable transformation was observed in the form of distinct GUS-staining patterns (sectors) in newly formed secondary tissues. Sector size and extent depended on the cell type transformed, the species and the length of time treated plants were allowed to grow (more than two years in some cases). Induced somatic sector analysis (ISSA) can now be efficiently used to study cell fate and gene function during secondary growth in stems of forest tree species.

4.
Plant Cell Rep ; 23(9): 617-24, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15322811

RESUMO

The genetic manipulation of perennial woody tree species presents a range of additional challenges compared to that of annual weedy crop species. These include long generation times and reproductive cycle, the heterogeneity of plants under investigation and, when investigating wood properties, a number of physical and biochemical limitations to microscopical and molecular experimentation. The use of in vitro wood formation systems for molecular studies and Agrobacterium-mediated introduction of transgenes overcomes many of these obstacles. Using a commercially relevant Eucalyptus species as model organism, we demonstrate here that in vitro wood formation systems can be readily employed to introduce transgenes into growing wood-producing tissue, initially leading to frequent transient gene expression in a range of cell types. Stable transformation events were observed as sectors of transformed tissue derived from primary transformation events in individual cells. The usefulness of such systems for the analysis of gene function during the process of wood formation and wood quality determination, as well as for constructing developmental fate maps of cambial derivatives, is discussed.


Assuntos
Eucalyptus/genética , Regulação da Expressão Gênica de Plantas/genética , Caules de Planta/genética , Transformação Genética , Madeira , Células Cultivadas , Clonagem Molecular , Eucalyptus/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/fisiologia , Glucuronidase/genética , Caules de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Rhizobium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...