Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 10: 1515, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824540

RESUMO

Next to their essential roles in plant growth and development, phytohormones play a central role in plant immunity against pathogens. In this study we studied the previously reported antagonism between the plant-pathogenic oomycete Pythium arrhenomanes and the root-knot nematode Meloidogyne graminicola, two root pathogens that co-occur in aerobic rice fields. In this manuscript, we investigated if the antagonism is related to imbalances in plant hormone levels, which could be involved in activation of plant defense. Hormone measurements and gene expression analyses showed that the jasmonate (JA) pathway is induced early upon P. arrhenomanes infection. Exogenous application of methyl-jasmonate (MeJA) on the plant confirmed that JA is needed for basal defense against both P. arrhenomanes and M. graminicola in rice. Whereas M. graminicola suppresses root JA levels to increase host susceptibility, Pythium inoculation boosts JA in a manner that prohibits JA repression by the nematode in double-inoculated plants. Exogenous MeJA supply phenocopied the defense-inducing capacity of Pythium against the root-knot nematode, whereas the antagonism was weakened in JA-insensitive mutants. Transcriptome analysis confirmed upregulation of JA biosynthesis and signaling genes upon P. arrhenomanes infection, and additionally revealed induction of genes involved in biosynthesis of diterpenoid phytoalexins, consistent with strong activation of the gene encoding the JA-inducible transcriptional regulator DITERPENOID PHYTOALEXIN FACTOR. Altogether, the here-reported data indicate an important role for JA-induced defense mechanisms in this antagonistic interaction. Next to that, our results provide evidence for induced expression of genes encoding ERF83, and related PR proteins, as well as auxin depletion in P. arrhenomanes infected rice roots, which potentially further contribute to the reduced nematode susceptibility seen in double-infected plants.

2.
New Phytol ; 217(1): 305-319, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28905991

RESUMO

Plant defense to microbial pathogens is often accompanied by significant growth inhibition. How plants merge immune system function with normal growth and development is still poorly understood. Here, we investigated the role of target of rapamycin (TOR), an evolutionary conserved serine/threonine kinase, in the plant defense response. We used rice as a model system and applied a combination of chemical, genetic, genomic and cell-based analyses. We demonstrate that ectopic expression of TOR and Raptor (regulatory-associated protein of mTOR), a protein previously demonstrated to interact with TOR in Arabidopsis, positively regulates growth and development in rice. Transcriptome analysis of rice cells treated with the TOR-specific inhibitor rapamycin revealed that TOR not only dictates transcriptional reprogramming of extensive gene sets involved in central and secondary metabolism, cell cycle and transcription, but also suppresses many defense-related genes. TOR overexpression lines displayed increased susceptibility to both bacterial and fungal pathogens, whereas plants with reduced TOR signaling displayed enhanced resistance. Finally, we found that TOR antagonizes the action of the classic defense hormones salicylic acid and jasmonic acid. Together, these results indicate that TOR acts as a molecular switch for the activation of cell proliferation and plant growth at the expense of cellular immunity.


Assuntos
Oryza/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Proliferação de Células/efeitos dos fármacos , Ciclopentanos/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/crescimento & desenvolvimento , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo
3.
New Phytol ; 206(2): 761-73, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25625327

RESUMO

Although numerous studies have shown the ability of silicon (Si) to mitigate a wide variety of abiotic and biotic stresses, relatively little is known about the underlying mechanism(s). Here, we have investigated the role of hormone defense pathways in Si-induced resistance to the rice brown spot fungus Cochliobolus miyabeanus. To delineate the involvement of multiple hormone pathways, a multidisciplinary approach was pursued, combining exogenous hormone applications, pharmacological inhibitor experiments, time-resolved hormone measurements, and bioassays with hormone-deficient and/or -insensitive mutant lines. Contrary to other types of induced resistance, we found Si-induced brown spot resistance to function independently of the classic immune hormones salicylic acid and jasmonic acid. Our data also rule out a major role of the abscisic acid (ABA) and cytokinin pathways, but suggest that Si mounts resistance to C. miyabeanus by preventing the fungus from hijacking the rice ethylene (ET) machinery. Interestingly, rather than suppressing rice ET signaling per se, Si probably interferes with the production and/or action of fungal ET. Together our findings favor a scenario whereby Si induces brown spot resistance by disarming fungal ET and argue that impairment of pathogen virulence factors is a core resistance mechanism underpinning Si-induced plant immunity.


Assuntos
Ascomicetos/fisiologia , Etilenos/metabolismo , Oryza/efeitos dos fármacos , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Silício/farmacologia , Resistência à Doença , Interações Hospedeiro-Patógeno , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Transdução de Sinais
4.
Mol Plant Pathol ; 16(8): 811-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25583155

RESUMO

Over recent decades, a multitude of studies have shown the ability of silicon (Si) to protect various plants against a range of microbial pathogens exhibiting different lifestyles and infection strategies. Despite this relative wealth of knowledge, an understanding of the action mechanism of Si is still in its infancy, which hinders its widespread application for agricultural purposes. In an attempt to further elucidate the molecular underpinnings of Si-induced disease resistance, we studied the transcriptome of control and Si-treated rice plants infected with the necrotrophic brown spot fungus Cochliobolus miyabeanus. Analysis of brown spot-infected control plants suggested that C. miyabeanus represses plant photosynthetic processes and nitrate reduction in order to trigger premature senescence and cause disease. In Si-treated plants, however, these pathogen-induced metabolic alterations are strongly impaired, suggesting that Si alleviates stress imposed by the pathogen. Interestingly, Si also significantly increased photorespiration rates in brown spot-infected plants. Although photorespiration is often considered as a wasteful process, recent studies have indicated that this metabolic bypass also enhances resistance during abiotic stress and pathogen attack by protecting the plant's photosynthetic machinery. In view of these findings, our results favour a scenario in which Si enhances brown spot resistance by counteracting C. miyabeanus-induced senescence and cell death via increased photorespiration. Moreover, our results shed light onto the mechanistic basis of Si-induced disease control and support the view that, in addition to activating plant immune responses, Si can also reduce disease severity by interfering with pathogen virulence strategies.


Assuntos
Ascomicetos/patogenicidade , Oryza/microbiologia
5.
Mol Plant Microbe Interact ; 26(5): 475-85, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23342972

RESUMO

Plant glutamate metabolism (GM) plays a pivotal role in amino acid metabolism and orchestrates crucial metabolic functions, with key roles in plant defense against pathogens. These functions concern three major areas: nitrogen transportation via the glutamine synthetase and glutamine-oxoglutarate aminotransferase cycle, cellular redox regulation, and tricarboxylic acid cycle-dependent energy reprogramming. During interactions with pathogens, the host GM is markedly altered, leading to either a metabolic state, termed "endurance", in which cell viability is maintained, or to an opposite metabolic state, termed "evasion", in which the process of cell death is facilitated. It seems that endurance-natured modulations result in resistance to necrotrophic pathogens and susceptibility to biotrophs, whereas evasion-related reconfigurations lead to resistance to biotrophic pathogens but stimulate the infection by necrotrophs. Pathogens, however, have evolved strategies such as toxin secretion, hemibiotrophy, and selective amino acid utilization to exploit the plant GM to their own benefit. Collectively, alterations in the host GM in response to different pathogenic scenarios appear to function in two opposing ways, either backing the ongoing defense strategy to ultimately shape an efficient resistance response or being exploited by the pathogen to promote and facilitate infection.


Assuntos
Ácido Glutâmico/metabolismo , Plantas/metabolismo , Doenças das Plantas
6.
J Exp Bot ; 64(5): 1281-93, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23255278

RESUMO

Plants are constantly threatened by a wide array of microbial pathogens. Pathogen invasion can lead to vast yield losses and the demand for sustainable plant-protection strategies has never been greater. Chemical plant activators and selected strains of rhizobacteria can increase resistance against specific types of pathogens but these treatments are often ineffective or even cause susceptibility against others. Silicon application is one of the scarce examples of a treatment that effectively induces broad-spectrum disease resistance. The prophylactic effect of silicon is considered to be the result of both passive and active defences. Although the phenomenon has been known for decades, very little is known about the molecular basis of silicon-afforded disease control. By combining knowledge on how silicon interacts with cell metabolism in diatoms and plants, this review describes silicon-induced regulatory mechanisms that might account for broad-spectrum plant disease resistance. Priming of plant immune responses, alterations in phytohormone homeostasis, regulation of iron homeostasis, silicon-driven photorespiration and interaction with defence signalling components all are potential mechanisms involved in regulating silicon-triggered resistance responses. Further elucidating how silicon exerts its beneficial properties may create new avenues for developing plants that are better able to withstand multiple attackers.


Assuntos
Resistência à Doença/efeitos dos fármacos , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Plantas/imunologia , Silício/farmacologia , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/imunologia , Plantas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...