Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Clin Pharmacokinet ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955946

RESUMO

BACKGROUND AND OBJECTIVE: The interstitial fluid of tissues is the effect site for antibiotics targeting extracellular pathogens. Microdialysis studies investigating these concentrations in muscle and subcutaneous tissue have reported notable variability in tissue penetration. This study aimed to comprehensively summarise the existing data on interstitial fluid penetration in these tissues and to identify potential factors influencing antibiotic distribution. METHODS: A literature review was conducted, focusing on subcutaneous and intramuscular microdialysis studies of antibiotics in both adult healthy volunteers and patients. Random-effect meta-analyses were used to aggregate effect size estimates of tissue penetration. The primary parameter of interest was the unbound penetration ratio, which represents the ratio of the area under the concentration-time curve in interstitial fluid relative to the area under the concentration-time curve in plasma, using unbound concentrations. RESULTS: In total, 52 reports were incorporated into this analysis. The unbound antibiotic exposure in the interstitial fluid of healthy volunteers was, on average, 22% lower than in plasma. The unbound penetration ratio values were higher after multiple dosing but did not significantly differ between muscle and subcutaneous tissue. Unbound penetration ratio values were lower for acids and bases compared with neutral antibiotics. Neither the molecular weight nor the logP of the antibiotics accounted for the variations in the unbound penetration ratio. Obesity was associated with lower interstitial fluid penetration. Conditions such as sepsis, tissue inflammation and tissue ischaemia were not significantly associated with altered interstitial fluid penetration. CONCLUSIONS: This study highlights the variability and generally lower exposure of unbound antibiotics in the subcutaneous and intramuscular interstitial fluid compared with exposure in plasma. Future research should focus on understanding the therapeutic relevance of these differences and identify key covariates that may influence them.

2.
Toxins (Basel) ; 16(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38922153

RESUMO

Physiologically based pharmacokinetic (PBPK) models were utilized to investigate potential interactions between aflatoxin B1 (AFB1) and efavirenz (EFV), a non-nucleoside reverse transcriptase inhibitor drug and inducer of several CYP enzymes, including CYP3A4. PBPK simulations were conducted in a North European Caucasian and Black South African population, considering different dosing scenarios. The simulations predicted the impact of EFV on AFB1 metabolism via CYP3A4 and CYP1A2. In vitro experiments using human liver microsomes (HLM) were performed to verify the PBPK predictions for both single- and multiple-dose exposures to EFV. Results showed no significant difference in the formation of AFB1 metabolites when combined with EFV (0.15 µM) compared to AFB1 alone. However, exposure to 5 µM of EFV, mimicking chronic exposure, resulted in increased CYP3A4 activity, affecting metabolite formation. While co-incubation with EFV reduced the formation of certain AFB1 metabolites, other outcomes varied and could not be fully attributed to CYP3A4 induction. Overall, this study provides evidence that EFV, and potentially other CYP1A2/CYP3A4 perpetrators, can impact AFB1 metabolism, leading to altered exposure to toxic metabolites. The results emphasize the importance of considering drug interactions when assessing the risks associated with mycotoxin exposure in individuals undergoing HIV therapy in a European and African context.


Assuntos
Aflatoxina B1 , Alcinos , Benzoxazinas , Ciclopropanos , Interações Medicamentosas , Microssomos Hepáticos , Modelos Biológicos , Inibidores da Transcriptase Reversa , Aflatoxina B1/farmacocinética , Aflatoxina B1/toxicidade , Humanos , Benzoxazinas/farmacocinética , Benzoxazinas/metabolismo , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Inibidores da Transcriptase Reversa/farmacocinética , Masculino , Citocromo P-450 CYP3A/metabolismo , Adulto , Feminino , Citocromo P-450 CYP1A2/metabolismo , Pessoa de Meia-Idade , Adulto Jovem , População Branca
3.
Artigo em Inglês | MEDLINE | ID: mdl-38215697

RESUMO

Irinotecan (CPT-11), an antineoplastic drug, is used for the treatment of colorectal and pancreatic cancer due to its topoisomerase I inhibitory activity. CPT-11 is a prodrug which is converted to its active metabolite SN-38 by carboxylesterases. SN-38 is further metabolized to its inactive metabolite SN-38 glucuronide. When evaluating the pharmacokinetic properties of CPT-11 and its metabolites, it is important to accurately assess the concentrations in both plasma as well as tumor tissues. Therefore, the aim of the current study was to develop and validate a robust and sensitive ultra-high performance liquid chromatography-tandem mass spectrometry method to quantify the concentration of CPT-11 and its metabolites (SN-38 and SN-38 glucuronide) in human plasma and peritoneal tumor tissue. The sample preparation of plasma and tumor tissue consisted of protein precipitation and enzymatic digestion/liquid-liquid extraction, respectively. Chromatographic separation was achieved with an Acquity UPLC BEH C18 column combined with a VanGuard pre-column. The mobile phases consisted of water +0.1 % formic acid (mobile phase A) and acetonitrile +0.1 % formic acid (mobile phase B). Mass analysis was performed using a Xevo TQS tandem mass spectrometer in the positive electrospray ionization mode. Method validation was successfully performed by assessing linearity, precision and accuracy, lower limit of quantification, carry over, selectivity, matrix effect and stability according to the following guidelines: "Committee for Medicinal Products for Human use, Guideline on Bioanalytical Method Validation". A cross-validation of the developed method was performed in a pilot pharmacokinetic study, demonstrating the usefulness of the current method to quantify CPT-11 and its metabolites in the different matrices.


Assuntos
Camptotecina/análogos & derivados , Formiatos , Glucuronídeos , Neoplasias Peritoneais , Humanos , Irinotecano , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Espectrometria de Massa com Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes
4.
Br J Clin Pharmacol ; 90(2): 504-515, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37864281

RESUMO

AIMS: Lisinopril, an angiotensin-converting enzyme inhibitor, is a frequently prescribed antihypertensive drug in the paediatric population, while being used off-label under the age of 6 years in the USA and for all paediatric patients globally. The SAFEPEDRUG project (IWT-130033) investigated lisinopril pharmacokinetics in hypertensive paediatric patients corresponding with the day-to-day clinical population. METHODS: The dose-escalation pilot study included 13 children with primary and secondary hypertension who received oral lisinopril once daily in the morning; doses ranged from 0.05 to 0.2 mg kg-1 . Patients were aged between 1.9 and 17.9 years (median 13.5 years) and weight ranged between 9.62 and 97.2 kg (median 53.2 kg). All data were analysed using Monolix version 2020R1 (Lixoft, France) and R version 3.6.2. RESULTS: A 1-compartment model with first-order absorption and first-order elimination optimally describes the data. Parameter estimates of absorption rate constant (0.075 h-1 [0.062, 0.088], typical value [95% confidence interval]), volume of distribution (31.38 L 70 kg-1 [10.5, 52.3]) and elimination clearance (24.2 L h-1 70 kg-1 [19.5, 28.9]) show good predictive ability. Significant covariate effects include total body weight on elimination clearance, and distribution volume and estimated glomerular filtration rate (eGFR) on elimination clearance. The effects of eGFR on the elimination clearance are optimally described by a linear effect centred around 105 mL min-1  1.73 m-2 . The effects of body weight were implemented using fixed allometric exponents centred around an adult weight of 70 kg. CONCLUSION: Lisinopril dose and regimen adjustments for paediatric patients should include eGFR on top of weight adjustments. An expanded model characterizing the pharmacodynamic effect is required to identify the optimal dose and dosing regimen.


Assuntos
Hipertensão , Lisinopril , Adulto , Humanos , Adolescente , Criança , Lactente , Pré-Escolar , Lisinopril/efeitos adversos , Projetos Piloto , Hipertensão/tratamento farmacológico , Hipertensão/induzido quimicamente , Rim , Peso Corporal
5.
Pharmaceutics ; 15(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36986755

RESUMO

Mycotoxins such as aflatoxin B1 (AFB1) are secondary fungal metabolites present in food commodities and part of one's daily exposure, especially in certain regions, e.g., sub-Saharan Africa. AFB1 is mostly metabolised by cytochrome P450 (CYP) enzymes, namely, CYP1A2 and CYP3A4. As a consequence of chronic exposure, it is interesting to check for interactions with drugs taken concomitantly. A physiologically based pharmacokinetic (PBPK) model was developed based on the literature and in-house-generated in vitro data to characterise the pharmacokinetics (PK) of AFB1. The substrate file was used in different populations (Chinese, North European Caucasian and Black South African), provided by SimCYP® software (v21), to evaluate the impact of populations on AFB1 PK. The model's performance was verified against published human in vivo PK parameters, with AUC ratios and Cmax ratios being within the 0.5-2.0-fold range. Effects on AFB1 PK were observed with commonly prescribed drugs in South Africa, leading to clearance ratios of 0.54 to 4.13. The simulations revealed that CYP3A4/CYP1A2 inducer/inhibitor drugs might have an impact on AFB1 metabolism, altering exposure to carcinogenic metabolites. AFB1 did not have effects on the PK of drugs at representative exposure concentrations. Therefore, chronic AFB1 exposure is unlikely to impact the PK of drugs taken concomitantly.

6.
Toxins (Basel) ; 14(12)2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36548770

RESUMO

Mycotoxin contamination is a global food safety issue leading to major public health concerns. Repeated exposure to multiple mycotoxins not only has repercussions on human health but could theoretically also lead to interactions with other xenobiotic substances-such as drugs-in the body by altering their pharmacokinetics and/or pharmacodynamics. The combined effects of chronic drug use and mycotoxin exposure need to be well understood in order to draw valid conclusions and, in due course, to develop guidelines. The aim of this review is to focus on food contaminants, more precisely on mycotoxins, and drugs. First, a description of relevant mycotoxins and their effects on human health and metabolism is presented. The potential for interactions of mycotoxins with drugs using in vitro and in vivo animal experiments is summarized. Predictive software tools for unraveling mycotoxin-drug interactions are proposed and future perspectives on this emerging topic are highlighted with a view to evaluate associated risks and to focus on precision medicine. In vitro and in vivo animal studies have shown that mycotoxins affect CYP450 enzyme activity. An impact from drugs on mycotoxins mediated via CYP450-enzymes is plausible; however, an impact of mycotoxins on drugs is less likely considering the much smaller dose exposure to mycotoxins. Drugs that are CYP450 perpetrators and/or substrates potentially influence the metabolism of mycotoxins, metabolized via these CYP450 enzymes. To date, very little research has been conducted on this matter. The only statistically sound reports describe mycotoxins as victims and drugs as perpetrators in interactions; however, more analysis on mycotoxin-drug interactions needs to be performed.


Assuntos
Micotoxinas , Animais , Humanos , Micotoxinas/toxicidade , Micotoxinas/análise , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Saúde Pública , Contaminação de Medicamentos
7.
Front Microbiol ; 13: 988083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110298

RESUMO

Mycotoxins, fungal secondary metabolites, are ubiquitously present in food commodities. Acute exposure to high levels or chronic exposure to low levels has an impact on the human body. The phase I metabolism in the human liver, performed by cytochrome P450 (CYP450) enzymes, is accountable for more than 80% of the overall metabolism of exogenous and endogenous compounds. Mycotoxins are (partially) metabolized by CYP450 enzymes. In this study, in vitro research was performed on CYP450 probes and aflatoxin B1 (AFB1), a carcinogenic mycotoxin, to obtain pharmacokinetic data on AFB1, required for further experimental work. The CYP450 probes of choice were a CYP3A4 substrate, midazolam (MDZ) and a CYP1A2 substrate, phenacetin (PH) since these are the main metabolizing phase I enzymes of AFB1. Linearity experiments were performed on the three substrates indicating that linear conditions were achieved at a microsomal protein concentration and incubation time of 0.25 mg/ml and 5 min, 0.50 mg/ml and 20 min and 0.25 mg/ml and 5 min for MDZ, PH and AFB1, respectively. The Km was determined in human liver microsomes and was estimated at 2.15 µM for MDZ, 40.0 µM for PH and 40.9 µM for AFB1. The associated V max values were 956 pmol/(mg.min) (MDZ), 856 pmol/(mg.min) (PH) and 11,536 pmol/(mg.min) (AFB1). Recombinant CYP systems were used to determine CYP450-specific Michaelis-Menten values for AFB1, leading to a CYP3A4 Km of 49.6 µM and an intersystem extrapolation factor (ISEF) corrected V max of 43.6 pmol/min/pmol P450 and a CYP1A2 Km of 58.2 µM and an ISEF corrected V max of 283 pmol/min/pmol P450. An activity adjustment factor (AAF) was calculated to account for differences between microsome batches and was used as a correction factor in the determination of the human in vivo hepatic clearance for MDZ, PH and AFB1. The hepatic blood clearance corrected for the AAF CLH,B,MDZ,AAF, CLH,B,PH,AAF CLH,B,AFB1,AAF(CYP3A4) and CLH,B,AFB1,AAF(CYP1A2) were determined in HLM at 44.1 L/h, 21.7 L/h, 40.0 L/h and 38.5 L/h. Finally, inhibition assays in HLM showed that 45% of the AFB1 metabolism was performed by CYP3A4/3A5 enzymes and 49% by CYP1A2 enzymes.

8.
CPT Pharmacometrics Syst Pharmacol ; 11(8): 951-966, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748042

RESUMO

Cystic fibrosis (CF) has been linked to altered drug disposition in various studies. However, the magnitude of these changes, influencing factors, and underlying mechanisms remain a matter of debate. The primary aim of this work was therefore to quantify changes in drug disposition (top-down) and the pathophysiological parameters known to affect pharmacokinetics (PKs; bottom-up). This was done through meta-analyses and meta-regressions in addition to theoretical PK simulations. Volumes of distribution and clearances were found to be elevated in people living with CF. These increases were larger in studies which included patients with pulmonary exacerbations. Differences in clearance were smaller in more recent studies and when results were normalized to body surface area or lean body mass instead of body weight. For the physiological parameters investigated, measured glomerular filtration rate and serum cytokine concentrations were found to be elevated in people living with CF, whereas serum albumin and creatinine levels were decreased. Possible pathophysiological mechanisms for these alterations relate to renal hyperfiltration, increases in free fraction, and inflammation. No differences were detected for cardiac output, body fat, fat free mass, hematocrit, creatinine clearance, and the activity of drug metabolizing enzymes. These findings imply that, in general, lower total plasma concentrations of drugs can be expected in people living with CF, especially when pulmonary exacerbations are present. Given the potential effect of CF on plasma protein binding and the variability in outcome observed between studies, the clinical relevance of adapting existing dosage regimens should be evaluated on a case-by-case basis.


Assuntos
Fibrose Cística , Administração Intravenosa , Antibacterianos , Peso Corporal , Creatinina , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Taxa de Filtração Glomerular , Humanos
9.
Mol Pharm ; 18(3): 952-965, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33400546

RESUMO

Pharmacokinetic (PK) profiles of a range of bedaquiline (BDQ) long-acting injectable (LAI) microsuspensions in rats after parenteral (i.e., intramuscular and subcutaneous) administration were correlated with the in vitro intrinsic dissolution rate (IDR) and thermodynamic solubility of BDQ in media varying in surfactant type and concentration to better understand the impact of different nonionic surfactants on the in vivo performance of BDQ LAI microsuspensions. All LAI formulations had a similar particle size distribution. The investigated surfactants were d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), poloxamer 338, and poloxamer 188. Furthermore, the relevance of medium complexity by using a biorelevant setup to perform in vitro measurements was assessed by comparing IDR and thermodynamic solubility results obtained in biorelevant media and formulation vehicle containing different surfactants in varying concentrations. In the presence of a surfactant, both media could be applied to obtain in vivo representative dissolution and solubility data because the difference between the biorelevant medium and formulation vehicle was predominantly nonsignificant. Therefore, a more simplistic medium in the presence of a surfactant was preferred to obtain in vitro measurements to predict the in vivo PK performance of LAI aqueous suspensions. The type of surfactant influenced the PK profiles of BDQ microsuspensions in rats, which could be the result of a surfactant effect on the IDR and/or thermodynamic solubility of BDQ. Overall, two surfactant groups could be differentiated: TPGS and poloxamers. Most differences between the PK profiles (i.e., maximum concentration observed, time of maximum concentration observed, and area under the curve) were observed during the first 21 days postdose, the time period during which particles in the aqueous suspension are expected to dissolve.


Assuntos
Diarilquinolinas/química , Diarilquinolinas/farmacocinética , Suspensões/química , Suspensões/farmacocinética , Água/química , Animais , Química Farmacêutica/métodos , Excipientes/química , Excipientes/farmacocinética , Masculino , Poloxâmero/química , Poloxâmero/farmacocinética , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Solubilidade , Tensoativos/química , Tensoativos/farmacocinética , Termodinâmica , Vitamina E/química , Vitamina E/farmacocinética
10.
Br J Clin Pharmacol ; 87(3): 1203-1214, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32693432

RESUMO

AIMS: Lisinopril is an angiotensin converting enzyme inhibitor to treat hypertension. It shows complex pharmacokinetics (PK), and its PK behaviour in paediatric populations is not well characterized. The aim of this study was to develop a physiologically based PK (PBPK) model for lisinopril to describe the drug's PK in children. METHODS: The PBPK model development was performed in a step-wise manner. An adult model was initially developed to characterize lisinopril's disposition and absorption and verified using literature data. Subsequently, the adult PBPK model was extrapolated to the paediatric population (0.5-18 years old) by accounting for age-dependent physiological and anatomical changes. Model performance was evaluated by comparing the PK profiles and drug exposures of observed vs predicted data. RESULTS: The disposition of lisinopril was well described by a minimal PBPK model-an effective strategy to capture the biphasic elimination of the drug. The absorption of lisinopril was described by the intestinal peptide transporter-mediated uptake. The adult model adequately described the literature data with predictions within a twofold range of clinical observations. Good model predictivity was also observed in children older than 6 years of age. The model overpredicted the drug exposure in children under 6 years, probably due to not incorporating the actual, unknown ontogeny of the intestinal peptide transporter. CONCLUSIONS: The PBPK model predicted the PK of lisinopril in adults and children above 6 years of age well. Model refinement in children under 6 years warrants future informative ontogeny data of the intestinal peptide transporter.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Lisinopril , Adolescente , Adulto , Criança , Pré-Escolar , Previsões , Humanos , Lactente , Modelos Biológicos
11.
Clin Pharmacokinet ; 59(12): 1551-1573, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32808233

RESUMO

BACKGROUND: Cystic fibrosis is a lethal inherited disease that affects multiple organs. To provide optimal pharmacological treatment of comorbidities associated with cystic fibrosis, relevant alterations in pharmacokinetics must be known. OBJECTIVE: The objective of this study was to compare the pharmacokinetics of drugs between patients with cystic fibrosis and controls, based on clinical study reports published from 1999 to 2019. METHODS: Clinical studies were considered if patients with cystic fibrosis and patients without cystic fibrosis/healthy volunteers were included, a drug was administered orally/intravenously and pharmacokinetic parameters were compared. RESULTS: In total, 32 clinical studies were included. Twenty-one studies reported absorption parameters. For multiple drugs, speed and/or extent of oral absorption were lower in cystic fibrosis. This phenomenon is possibly related to pathophysiological changes in the gastrointestinal tract associated with cystic fibrosis. However, a large proportion of drugs had comparable absorption kinetics. Twenty-one studies discussed volume of distribution, which was comparable between groups for most drugs. Initial differences became smaller when scaled to body composition. For some highly protein-bound drugs, inflammation-related changes in plasma proteins helped explain residual variability between cystic fibrosis and controls. Twenty-four studies elaborated on clearance, whereby higher clearances were observed in cystic fibrosis. In contrast with previously published reviews, no evidence was found for increased activities of drug-metabolising enzymes nor for up-regulation of active transport processes involved in drug disposition. In most cases, scaling clearance parameters to body composition and/or incorporating differences in plasma protein concentration accounted for these larger clearances. IMPLICATIONS: There is no evidence that genetic defects causing cystic fibrosis directly lead to altered pharmacokinetics. However, co-morbidities can have a potential impact on drug absorption and disposition. Because of gastrointestinal complications, it is not advisable to extrapolate drug absorption parameters from healthy volunteers to patients with cystic fibrosis. Differences observed in the volume of distribution and clearance in patients with cystic fibrosis can potentially be explained by correcting for lean body mass.


Assuntos
Fibrose Cística , Preparações Farmacêuticas/metabolismo , Farmacocinética , Composição Corporal , Fibrose Cística/metabolismo , Humanos
12.
AAPS J ; 22(5): 96, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32710204

RESUMO

Intraperitoneal chemoperfusion (IPEC) of cisplatin is a popular treatment for advanced ovarian cancer, typically under hyperthermia (HIPEC). The use of cisplatin under (H)IPEC is off-label, and the role of hyperthermia is unknown. The aim of this study was to characterize the pharmacokinetic/pharmacodynamic (PKPD) properties of cisplatin under (H)IPEC and to predict the optimal treatment regimen. Using a randomized design, data on intact cisplatin perfusate and plasma concentrations, leukocyte counts-a hematotoxicity marker-and serum creatinine-a nephrotoxicity marker-were collected from 50 patients treated with a combination of cytoreductive surgery (CRS) and either normothermic or hyperthermic IPEC of cisplatin dosed at 75, 100, and 120 mg/m2. The non-linear mixed effects modeling technique was used to construct the PKPD models. The PK of intact cisplatin was characterized by a two-compartment model. A semi-physiological myelosuppression model for the leukopenia was modified to account for the CRS-induced leukocytosis and the residual myelosuppression effect of neoadjuvant chemotherapy. The incidence and severity of nephrotoxicity were described by a discrete-time Markov model. Hyperthermia increased the absorption rate of cisplatin by 16.3% but did not show a clinically relevant impact on the investigated toxicities compared with normothermia. Leukopenia was not severe, but nephrotoxicity can become severe or life-threatening and was affected by the dose and IPEC duration. The model predicted that nephrotoxicity is minimal at a cisplatin dose of 75 mg/m2 with an IPEC duration of 1-2 h and an 1-h duration is favored for doses between 100 and 120 mg/m2. Graphical abstract.


Assuntos
Antineoplásicos/farmacocinética , Carcinoma Epitelial do Ovário/tratamento farmacológico , Cisplatino/farmacocinética , Modelos Teóricos , Neoplasias Ovarianas/tratamento farmacológico , Idoso , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Carcinoma Epitelial do Ovário/cirurgia , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Procedimentos Cirúrgicos de Citorredução , Feminino , Humanos , Quimioterapia Intraperitoneal Hipertérmica , Rim/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Pessoa de Meia-Idade , Neoplasias Ovarianas/cirurgia , Neoplasias Peritoneais/tratamento farmacológico
13.
Paediatr Drugs ; 22(4): 369-383, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32507959

RESUMO

Desmopressin is a synthetic analogue of the natural antidiuretic hormone arginine vasopressin. Over the years, it has been clinically used to manage nocturnal polyuria in children with enuresis. Various pharmaceutical formulations of desmopressin have been commercialized for this indication-nasal spray, nasal drops, oral tablet and oral lyophilizate. Despite the fact that desmopressin is a frequently prescribed drug in children, its use and posology is based on limited pediatric data. This review provides an overview of the current pediatric pharmacological data related to the different desmopressin formulations, including their pharmacokinetics, pharmacodynamics and adverse events. Regarding the pharmacokinetics, a profound food effect on the oral bioavailability was demonstrated as well as different plasma concentration-time profiles (double absorption peak) of the desmopressin lyophilizate between adults and children. Literature about maturational differences in distribution, metabolism and excretion of desmopressin is rather limited. Regarding the pharmacodynamics, formulation/dose/food effect and predictors of response were evaluated. The lyophilizate is the preferred formulation, but the claimed bioequivalence in adults (200 µg tablet and 120 µg lyophilizate), could not be readily extrapolated to children. Prescribing the standard flat-dose regimen to the entire pediatric population might be insufficient to attain response to desmopressin treatment, whereby dosing schemes based on age and weight were proposed. Moreover, response to desmopressin is variable, whereby complete-, partial- and non-responders are reported. Different reasons were enumerated that might explain the difference in response rate to desmopressin observed: different pathophysiological mechanisms, bladder capacity and other predictive factors (i.e. breast feeding, familial history, compliance, sex, etc.). Also, the relapse rate of desmopressin treatment was high, rendering it necessary to use a pragmatic approach for the treatment of enuresis, whereby careful consideration of the position of desmopressin within this treatment is required. Regarding the safety of the different desmopressin formulations, the use of desmopressin was generally considered safe, but additional measures should be taken to prevent severe hyponatremia. To conclude the review, to date, major knowledge gaps in pediatric pharmacological aspects of the different desmopressin formulations still remain. Additional information should be collected about the clinical relevance of the double absorption peak, the food effect, the bioequivalence/therapeutic equivalence, the pediatric adapted dosing regimens, the study endpoints and the difference between performing studies at daytime or at nighttime. To fill in these gaps, additional well designed pharmacokinetic and pharmacodynamic studies in children should be performed.


Assuntos
Antidiuréticos/administração & dosagem , Desamino Arginina Vasopressina/administração & dosagem , Enurese/tratamento farmacológico , Antidiuréticos/farmacologia , Criança , Desamino Arginina Vasopressina/farmacologia , Humanos , Comprimidos
14.
Sci Rep ; 10(1): 6688, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317693

RESUMO

Peritoneal spread indicates poor prognosis in patients with serous ovarian carcinoma (SOC) and is generally treated by surgical cytoreduction and chemotherapy. Novel treatment options are urgently needed to improve patient outcome. Clinically relevant cell lines and patient-derived xenograft (PDX) models are of critical importance to therapeutic regimen evaluation. Here, a PDX model was established, by orthotopic engraftment after subperitoneal tumor slurry injection of low-grade SOC, resulting in an early-stage transplantable peritoneal metastasis (PM)-PDX model. Histology confirmed the micropapillary and cribriform growth pattern with intraluminal tumor budding and positivity for PAX8 and WT1. PM-PDX dissociated cells show an epithelial morphotype with a 42 h doubling time and 40% colony forming efficiency, they are low sensitive to platinum derivatives and highly sensitive to paclitaxel (IC50: 6.3 ± 2.2 nM, mean ± SEM). The patient primary tumor, PM, PM-PDX and derived cell line all show a KRAS c.35 G > T (p.(Gly12Val)) mutation and show sensitivity to the MEK inhibitor trametinib in vitro (IC50: 7.2 ± 0.5 nM, mean ± SEM) and in the PM mouse model. These preclinical models closely reflecting patient tumors are useful to further elucidate LGSOC disease progression, therapy response and resistance mechanisms.


Assuntos
Cistadenocarcinoma Seroso/patologia , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/secundário , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Feminino , Humanos , Camundongos SCID , Repetições de Microssatélites/genética , Mutação/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Piridonas/uso terapêutico , Pirimidinonas/uso terapêutico
15.
Clin Pharmacokinet ; 59(1): 81-96, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31347012

RESUMO

INTRODUCTION: The bioequivalence of two formulations of desmopressin (dDAVP), a vasopressin analogue prescribed for nocturnal enuresis treatment in children, has been previously confirmed in adults but not in children. In this study, we aimed to study the pharmacokinetics (PK) and pharmacodynamics (PD) of these two formulations, in both fasted and fed children, including patients younger than 6 years of age. METHODS: Previously published data from one PK study and one PK/PD study in children aged between 6 and 16 years were combined with a new PK/PD study in children aged between 6 months and 8 years, and analysed using population PK/PD modelling. Simulations were performed to further explore the relative bioavailability of both formulations and evaluate current dosing strategies. RESULTS: The complex absorption behaviour of the lyophilizate was modelled using a double input, linked to a one-compartmental model with linear elimination and an indirect response model linking dDAVP concentration to produced urine volume and osmolality. The final model described the observed data well and elucidated the complexity of bioequivalence and therapeutic equivalence of the two formulations. Simulations showed that current dosing regimens using a fixed dose of lyophilizate 120 µg is not adequate for children, assuming children to be in the fed state when taking dDAVP. A new age- and weight-based dosing regimen was suggested and was shown to lead to improved, better tailored effects. CONCLUSIONS: Bioequivalence and therapeutic equivalence data of two formulations of the same drug in adults cannot be readily extrapolated to children. This study shows the importance of well-designed paediatric clinical trials and how they can be analysed using mixed-effects modelling to make clinically relevant inferences. A follow-up clinical trial testing the proposed dDAVP dosing regimen should be performed. CLINICAL TRIAL REGISTRATION: This trial has been registered at www.clinicaltrials.gov (identifier NCT02584231; EudraCT 2014-005200-13).


Assuntos
Antidiuréticos/farmacocinética , Desamino Arginina Vasopressina/farmacocinética , Composição de Medicamentos/métodos , Enurese Noturna/tratamento farmacológico , Adolescente , Antidiuréticos/administração & dosagem , Antidiuréticos/sangue , Antidiuréticos/uso terapêutico , Disponibilidade Biológica , Criança , Pré-Escolar , Simulação por Computador/estatística & dados numéricos , Desamino Arginina Vasopressina/administração & dosagem , Desamino Arginina Vasopressina/sangue , Desamino Arginina Vasopressina/uso terapêutico , Método Duplo-Cego , Jejum/fisiologia , Feminino , Humanos , Lactente , Masculino , Modelos Biológicos , Concentração Osmolar , Equivalência Terapêutica
16.
Artigo em Inglês | MEDLINE | ID: mdl-31685467

RESUMO

Attainment of appropriate pharmacokinetic-pharmacodynamic (PK-PD) targets for antimicrobial treatment is challenging in critically ill patients, particularly for cefepime, which exhibits a relative narrow therapeutic-toxic window compared to other beta-lactam antibiotics. Target-controlled infusion (TCI) systems, which deliver drugs to achieve specific target drug concentrations, have successfully been implemented for improved dosing of sedatives and analgesics in anesthesia. We conducted a clinical trial in an intensive care unit (ICU) to investigate the performance of TCI for adequate target attainment of cefepime. Twenty-one patients treated with cefepime according to the standard of care were included. Cefepime was administered through continuous infusion using TCI for a median duration of 4.5 days. TCI was based on a previously developed population PK model incorporating the estimated creatinine clearance based on the Cockcroft-Gault formula as the input variable to calculate cefepime clearance. A cefepime blood concentration of 16 mg/liter was targeted. To evaluate the measured versus predicted plasma concentrations, blood samples were taken (median of 10 samples per patient), and total cefepime concentrations were measured using ultraperformance liquid chromatography-tandem mass spectrometry. The performance of the TCI system was evaluated using Varvel criteria. Half (50.3%) of the measured cefepime concentrations were within ±30% around the target value of 16 mg liter-1 The wobble was 11.4%, the median performance error (MdPE) was 21.1%, the median absolute performance error (MdAPE) was 32.0%, and the divergence was -3.72% h-1 Based on these results, we conclude that TCI is useful for dose optimization of cefepime in ICU patients. (This study has been registered at ClinicalTrials.gov under identifier NCT02688582.).


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Cefepima/administração & dosagem , Cefepima/uso terapêutico , Antibacterianos/sangue , Cefepima/sangue , Cromatografia Líquida , Estado Terminal , Unidades de Terapia Intensiva/estatística & dados numéricos , Espectrometria de Massas em Tandem
17.
Anesthesiology ; 131(5): 1004-1017, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31425170

RESUMO

BACKGROUND: Dexmedetomidine is a sedative with modest analgesic efficacy, whereas remifentanil is an opioid analgesic with modest sedative potency. Synergy is often observed when sedative-hypnotics are combined with opioid analgesics in anesthetic practice. A three-phase crossover trial was conducted to study the pharmacodynamic interaction between remifentanil and dexmedetomidine. METHODS: After institutional review board approval, 30 age- and sex- stratified healthy volunteers were studied. The subjects received consecutive stepwise increasing target-controlled infusions of dexmedetomidine, remifentanil, and remifentanil with a fixed dexmedetomidine background concentration. Drug effects were measured using binary (yes or no) endpoints: no response to calling the subject by name, tolerance of shaking the patient while shouting the name ("shake and shout"), tolerance of deep trapezius squeeze, and tolerance of laryngoscopy. The drug effect was measured using the electroencephalogram-derived "Patient State Index." Pharmacokinetic-pharmacodynamic modeling related the administered dexmedetomidine and remifentanil concentration to these observed effects. RESULTS: The binary endpoints were correlated with dexmedetomidine concentrations, with increasing concentrations required for increasing stimulus intensity. Estimated model parameters for the dexmedetomidine EC50 were 2.1 [90% CI, 1.6 to 2.8], 9.2 [6.8 to 13], 24 [16 to 35], and 35 [23 to 56] ng/ml, respectively. Age was inversely correlated with dexmedetomidine EC50 for all four stimuli. Adding remifentanil did not increase the probability of tolerance of any of the stimuli. The cerebral drug effect as measured by the Patient State Index was best described by the Hierarchical interaction model with an estimated dexmedetomidine EC50 of 0.49 [0.20 to 0.99] ng/ml and remifentanil EC50 of 1.6 [0.87 to 2.7] ng/ml. CONCLUSIONS: Low dexmedetomidine concentrations (EC50 of 0.49 ng/ml) are required to induce sedation as measured by the Patient State Index. Sensitivity to dexmedetomidine increases with age. Despite falling asleep, the majority of subjects remained arousable by calling the subject's name, "shake and shout," or a trapezius squeeze, even when reaching supraclinical concentrations. Adding remifentanil does not alter the likelihood of response to graded stimuli.


Assuntos
Analgésicos Opioides/sangue , Dexmedetomidina/sangue , Interações Medicamentosas/fisiologia , Hipnóticos e Sedativos/sangue , Laringoscopia , Remifentanil/sangue , Adolescente , Adulto , Idoso , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/efeitos adversos , Estudos Cross-Over , Dexmedetomidina/administração & dosagem , Dexmedetomidina/efeitos adversos , Feminino , Voluntários Saudáveis , Humanos , Hipertensão/induzido quimicamente , Hipertensão/etiologia , Hipnóticos e Sedativos/administração & dosagem , Hipnóticos e Sedativos/efeitos adversos , Infusões Intravenosas , Laringoscopia/efeitos adversos , Masculino , Pessoa de Meia-Idade , Remifentanil/administração & dosagem , Remifentanil/efeitos adversos , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/etiologia , Adulto Jovem
18.
Pharm Res ; 36(9): 127, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31236836

RESUMO

PURPOSE: Paclitaxel (PTX)-loaded genipin-crosslinked gelatin microspheres (GP-MS) are a prolonged IP delivery system under development for the treatment of peritoneal minimal residual disease (pMRD). Here, we show the use of a pharmacokinetic-pharmacodynamic (PKPD) modelling approach to inform the formulation development of PTX-GP-MS in a mice pMRD model. METHODS: PTX blood concentrations and survival data were obtained in Balb/c Nu mice receiving different single IP doses (7.5 and/or 35 mg/kg) of PTX-ethanolic loaded GP-MS (PTXEtOH-GP-MS), PTX-nanosuspension loaded GP-MS (PTXnano-GP-MS), and immediate release formulation Abraxane®. A population PK model was developed to characterize the PTX blood concentration pattern and to predict PTX concentrations in peritoneum. Afterwards, PKPD relationships between the predicted peritoneal or blood concentrations and survival were explored using time-to-event modelling. RESULTS: A PKPD model was developed that simultaneously describes the competing effects of treatment efficacy (driven by peritoneal concentration) and toxicity (driven by blood concentration) of PTX on survival. Clear survival advantages of PTXnano-GP-MS over PTXEtOH-GP-MS and Abraxane® were found. Simulations of different doses of PTXnano-GP-MS demonstrated that drug-induced toxicity is high at doses between 20 and 35 mg/kg. CONCLUSIONS: The model predicts that the dose range of 7.5-15 mg/kg of PTXnano-GP-MS provides an optimal balance between efficacy and safety.


Assuntos
Paclitaxel Ligado a Albumina/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Neoplasias Peritoneais/tratamento farmacológico , Paclitaxel Ligado a Albumina/química , Paclitaxel Ligado a Albumina/farmacocinética , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Portadores de Fármacos , Gelatina/química , Humanos , Iridoides/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Microesferas , Modelos Biológicos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Clin Pharmacol Ther ; 106(1): 195-203, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30636281

RESUMO

Generic substitution of antiepileptic drugs is generally not advised by neurologists. The present study investigated the switchability of gabapentin 800 mg tablets (Neurontin and Gabasandoz) using an individual bioequivalence (IBE) study design with two batches of each product and assessed whether between-batch and between-formulation variability in exposure play a significant role in the within-subject variability. The trial was analyzed according to the US Food and Drug Administration (FDA) framework to establish IBE. The IBE was shown between both products with the 95% upper confidence bound of the IBE criterion being -2.01 and -2.31 for area under the concentration-time curve from zero to infinity (AUC0-inf ) and peak plasma concentration (Cmax ), respectively. Subject-by-formulation variability (1.35%) was negligible compared with the within-subject variability of AUC0-inf with Neurontin (19.0%) and Gabasandoz (23.6%). Inclusion of an additional batch did not significantly change this within-subject variability (20.2% and 23.6%, respectively). This study shows that substitution of gabapentin 800 mg tablets of Neurontin and Gabasandoz should be possible without affecting clinical outcomes.


Assuntos
Anticonvulsivantes/farmacocinética , Medicamentos Genéricos/farmacocinética , Gabapentina/farmacocinética , Adulto , Anticonvulsivantes/sangue , Área Sob a Curva , Estudos Cross-Over , Substituição de Medicamentos , Medicamentos Genéricos/análise , Feminino , Gabapentina/sangue , Efeito do Trabalhador Sadio , Humanos , Masculino , Pessoa de Meia-Idade , Equivalência Terapêutica , Estados Unidos , United States Food and Drug Administration/normas , Adulto Jovem
20.
J Antimicrob Chemother ; 74(3): 667-674, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535122

RESUMO

OBJECTIVES: Altered linezolid pharmacokinetics (PK) in obese individuals has been hypothesized in previous studies. However, specific dosing recommendations for this population are still lacking. The main goal of this study was to evaluate PK/pharmacodynamic (PKPD) target attainment when using a 600 mg intravenous q12h linezolid dose against MRSA in obese patients with pneumonia. METHODS: Fifteen obese pneumonia patients with a confirmed or suspected MRSA involvement treated with 600 mg of intravenous linezolid q12h were studied for 3 days. Population PK modelling was used to characterize the PK variability and to screen for influential patient characteristics. Monte Carlo simulations were carried out to investigate the PTA and time to target attainment for linezolid dosing against MRSA. RESULTS: A two-compartment model with linear elimination adequately described the data. Body weight and age both have a significant effect on linezolid clearance. Simulations demonstrate that the probability of attaining PKPD targets is low. Moreover, the PTA decreases with weight, and increases with age. Standard linezolid dosing in obese pneumonia patients with MRSA (MICs of 1-4 mg/L) leads to unacceptably low (near zero to 60%) PTA for patients <65 years old. CONCLUSIONS: Standard linezolid dosing is likely to provide insufficient target attainment against MRSA in obese patients. Body weight and especially age are important characteristics to be considered when administering linezolid to treat MRSA infections.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Linezolida/administração & dosagem , Linezolida/farmacocinética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Obesidade/complicações , Pneumonia Estafilocócica/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...