Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arthritis Res Ther ; 25(1): 190, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789403

RESUMO

BACKGROUND: As current therapies for canine osteoarthritis (OA) provide mainly symptomatic improvement and fail to address the complex pathology of the disease, mesenchymal stem cells (MSCs) offer a promising biological approach to address both aspects of OA through their immunomodulatory properties. METHODS: This study aimed to investigate the safety and efficacy of xenogeneic MSCs in dogs with OA at different dose levels after intravenous injection. OA was surgically induced in the right stifle joint. Thirty-two male and female dogs were divided into three treatment groups and a control group. Regular general physical examinations; lameness, joint, radiographic, and animal caretaker assessments; pressure plate analyses; and blood analyses were performed over 42 days. At study end, joint tissues were evaluated regarding gross pathology, histopathology, and immunohistochemistry. In a follow-up study, the biodistribution of intravenously injected 99mTc-labeled equine peripheral blood-derived MSCs was evaluated over 24h in three dogs after the cruciate ligament section. RESULTS: The dose determination study showed the systemic administration of ePB-MSCs in a canine OA model resulted in an analgesic, anti-inflammatory, and joint tissue protective effect associated with improved clinical signs and improved cartilage structure, as well as a good safety profile. Furthermore, a clear dose effect was found with 0.3 × 106 ePB-MSCs as the most effective dose. In addition, this treatment was demonstrated to home specifically towards the injury zone in a biodistribution study. CONCLUSION: This model-based study is the first to confirm the efficacy and safety of systemically administered xenogeneic MSCs in dogs with OA. The systemic administration of a low dose of xenogeneic MSCs could offer a widely accessible, safe, and efficacious treatment to address the complex pathology of canine OA and potentially slow down the disease progression by its joint tissue protective effect.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteoartrite , Animais , Masculino , Cães , Feminino , Cavalos , Seguimentos , Distribuição Tecidual , Injeções Intra-Articulares , Osteoartrite/patologia , Imunomodulação , Transplante de Células-Tronco Mesenquimais/métodos
2.
Vet Res Commun ; 40(1): 39-48, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26757735

RESUMO

Tendons regenerate poorly due to a dense extracellular matrix and low cellularity. Cellular therapies aim to improve tendon repair using mesenchymal stem cells and tenocytes; however, a current limitation is the low proliferative potential of tenocytes in cases of severe trauma. The purpose of this study was to develop a method useful in veterinary medicine to improve the differentiation of Peripheral Blood equine mesenchymal stem cells (PB-MSCs) into tenocytes. PB-MSCs were used to study the effects of the addition of some growth factors (GFs) as TGFß3 (transforming growth factor), EGF2 (Epidermal growth factor), bFGF2 (Fibroblast growth factor) and IGF-1 (insulin-like growth factor) in presence or without Low Level Laser Technology (LLLT) on the mRNA expression levels of genes important in the tenogenic induction as Early Growth Response Protein-1 (EGR1), Tenascin (TNC) and Decorin (DCN). The singular addition of GFs did not show any influence on the mRNA expression of tenogenic genes whereas the specific combinations that arrested cell proliferation in favour of differentiation were the following: bFGF2 + TGFß3 and bFGF2 + TGFß3 + LLLT. Indeed, the supplement of bFGF2 and TGFß3 significantly upregulated the expression of Early Growth Response Protein-1 and Decorin, while the use of LLLT induced a significant increase of Tenascin C levels. In conclusion, the present study might furnish significant suggestions for developing an efficient approach for tenocyte induction since the external administration of bFGF2 and TGFß3, along with LLLT, influences the differentiation of PB-MSCs towards the tenogenic fate.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Cavalos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Traumatismos dos Tendões/veterinária , Tendões/citologia , Animais , Proliferação de Células , Células Cultivadas , Decorina/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Terapia com Luz de Baixa Intensidade , Traumatismos dos Tendões/terapia
3.
Cell Physiol Biochem ; 37(2): 651-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26344791

RESUMO

BACKGROUND: Clinical results of regenerative treatments for osteoarthritis are becoming increasingly significant. However, several questions remain UNANSWERED concerning mesenchymal stem cell (MSC) adhesion and incorporation into cartilage. METHODS: To this end, peripheral blood (PB) MSCs were chondrogenically induced and/or stimulated with pulsed electromagnetic fields (PEMFs) for a brief period of time just sufficient to prime differentiation. In an organ culture study, PKH26 labelled MSCs were added at two different cell densities (0.5 x106 vs 1.0 x106). In total, 180 explants of six horses (30 per horse) were divided into five groups: no lesion (i), lesion alone (ii), lesion with naïve MSCs (iii), lesion with chondrogenically-induced MSCs (iv) and lesion with chondrogenically-induced and PEMF-stimulated MSCs (v). Half of the explants were mechanically loaded and compared with the unloaded equivalents. Within each circumstance, six explants were histologically evaluated at different time points (day 1, 5 and 14). RESULTS: COMP expression was selectively increased by chondrogenic induction (p = 0.0488). PEMF stimulation (1mT for 10 minutes) further augmented COL II expression over induced values (p = 0.0405). On the other hand, MSC markers remained constant over time after induction, indicating a largely predifferentiated state. In the unloaded group, MSCs adhered to the surface in 92.6% of the explants and penetrated into 40.7% of the lesions. On the other hand, physiological loading significantly reduced surface adherence (1.9%) and lesion filling (3.7%) in all the different conditions (p < 0.0001). Remarkably, homogenous cell distribution was characteristic for chondrogenic induced MSCs (+/- PEMFs), whereas clump formation occurred in 39% of uninduced MSC treated cartilage explants. Finally, unloaded explants seeded with a moderately low density of MSCs exhibited greater lesion filling (p = 0.0022) and surface adherence (p = 0.0161) than explants seeded with higher densities of MSCs. In all cases, the overall amount of lesion filling decreased from day 5 to 14 (p = 0.0156). CONCLUSION: The present study demonstrates that primed chondrogenic induction of MSCs at a lower cell density without loading results in significantly enhanced and homogenous MSC adhesion and incorporation into equine cartilage.


Assuntos
Condrogênese , Células-Tronco Mesenquimais/citologia , Técnicas de Cultura de Órgãos/métodos , Animais , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Adesão Celular , Contagem de Células , Diferenciação Celular , Células Cultivadas , Colágeno Tipo II/metabolismo , Campos Eletromagnéticos , Cavalos
4.
Plant Physiol ; 136(4): 3905-19, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15557102

RESUMO

Root hairs emerge from epidermal root cells (trichoblasts) and differentiate by highly localized tip growth. Microtubules (MTs) are essential for establishing and maintaining the growth polarity of root hairs. The current knowledge about the configuration of the MT cytoskeleton during root hair development is largely based on experiments on fixed material, and reorganization and in vivo dynamics of MTs during root hair development is at present unclear. This in vivo study provides new insights into the mechanisms of MT (re)organization during root hair development in Arabidopsis (Arabidopsis thaliana). Expression of a binding site of the MT-associated protein-4 tagged with green fluorescent protein enabled imaging of MT nucleation, growth, and shortening and revealed distinct MT configurations. Depending on the dynamics of the different MT populations during root hair development, either repeated two-dimensional (x, y, t) or repeated three-dimensional (x, y, z, t) scanning was performed. Furthermore, a new image evaluation tool was developed to reveal important data on MT instability. The data show how MTs reorient after apparent contact with other MTs and support a model for MT alignment based on repeated reorientation of dynamic MT growth.


Assuntos
Arabidopsis/ultraestrutura , Microtúbulos/ultraestrutura , Raízes de Plantas/ultraestrutura , Dinitrobenzenos/farmacologia , Microtúbulos/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Sulfanilamidas/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...