Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 11(1): 223, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833777

RESUMO

BACKGROUND: Identification of pathogenic bacteria from clinical specimens and evaluating their antimicrobial resistance (AMR) are laborious tasks that involve in vitro cultivation, isolation, and susceptibility testing. Recently, a number of methods have been developed that use machine learning algorithms applied to the whole-genome sequencing data of isolates to approach this problem. However, making AMR assessments from more easily available metagenomic sequencing data remains a big challenge. RESULTS: We present the Metagenomic Sequencing to Antimicrobial Resistance (MGS2AMR) pipeline, which detects antibiotic resistance genes (ARG) and their possible organism of origin within a sequenced metagenomics sample. This in silico method allows for the evaluation of bacterial AMR directly from clinical specimens, such as stool samples. We have developed two new algorithms to optimize and annotate the genomic assembly paths within the raw Graphical Fragment Assembly (GFA): the GFA Linear Optimal Path through seed segments (GLOPS) algorithm and the Adapted Dijkstra Algorithm for GFA (ADAG). These novel algorithms improve the sensitivity of ARG detection and aid in species annotation. Tests based on 1200 microbiome samples show a high ARG recall rate and correct assignment of the ARG origin. The MGS2AMR output can further be used in many downstream applications, such as evaluating AMR to specific antibiotics in samples from emerging intestinal infections. We demonstrate that the MGS2AMR-derived data is as informative for the entailing prediction models as the whole-genome sequencing (WGS) data. The performance of these models is on par with our previously published method (WGS2AMR), which is based on the sequencing data of bacterial isolates. CONCLUSIONS: MGS2AMR can provide researchers with valuable insights into the AMR content of microbiome environments and may potentially improve patient care by providing faster quantification of resistance against specific antibiotics, thereby reducing the use of broad-spectrum antibiotics. The presented pipeline also has potential applications in other metagenome analyses focused on the defined sets of genes. Video Abstract.


Assuntos
Antibacterianos , Metagenoma , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Bactérias , Metagenômica/métodos
2.
NAR Genom Bioinform ; 4(3): lqac050, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35899079

RESUMO

Assessment of bioinformatics tools for the metagenomics analysis from the whole genome sequencing data requires realistic benchmark sets. We developed an effective and simple generator of artificial metagenomes from real sequencing experiments. The tool (SEQ2MGS) analyzes the input FASTQ files, precomputes genomic content, and blends shotgun reads from different sequenced isolates, or spike isolate(s) in real metagenome, in desired proportions. SEQ2MGS eliminates the need for simulation of sequencing platform variations, reads distributions, presence of plasmids, viruses, and contamination. The tool is especially useful for a quick generation of multiple complex samples that include new or understudied organisms, even without assembled genomes. For illustration, we first demonstrated the ease of SEQ2MGS use for the simulation of altered Schaedler flora (ASF) in comparison with de novo metagenomics generators Grinder and CAMISIM. Next, we emulated the emergence of a pathogen in the human gut microbiome and observed that Kraken, Centrifuge, and MetaPhlAn, while correctly identified Klebsiella pneumoniae, produced inconsistent results for the rest of real metagenome. Finally, using the MG-RAST platform, we affirmed that SEQ2MGS properly transfers genomic information from an isolate into the simulated metagenome by the correct identification of antimicrobial resistance genes anticipated to appear compared to the original metagenome.

3.
Front Microbiol ; 11: 1013, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528441

RESUMO

BACKGROUND: Early detection of antimicrobial resistance in pathogens and prescription of more effective antibiotics is a fast-emerging need in clinical practice. High-throughput sequencing technology, such as whole genome sequencing (WGS), may have the capacity to rapidly guide the clinical decision-making process. The prediction of antimicrobial resistance in Gram-negative bacteria, often the cause of serious systemic infections, is more challenging as genotype-to-phenotype (drug resistance) relationship is more complex than for most Gram-positive organisms. METHODS AND FINDINGS: We have used NCBI BioSample database to train and cross-validate eight XGBoost-based machine learning models to predict drug resistance to cefepime, cefotaxime, ceftriaxone, ciprofloxacin, gentamicin, levofloxacin, meropenem, and tobramycin tested in Acinetobacter baumannii, Escherichia coli, Enterobacter cloacae, Klebsiella aerogenes, and Klebsiella pneumoniae. The input is the WGS data in terms of the coverage of known antibiotic resistance genes by shotgun sequencing reads. Models demonstrate high performance and robustness to class imbalanced datasets. CONCLUSION: Whole genome sequencing enables the prediction of antimicrobial resistance in Gram-negative bacteria. We present a tool that provides an in silico antibiogram for eight drugs. Predictions are accompanied with a reliability index that may further facilitate the decision making process. The demo version of the tool with pre-processed samples is available at https://vancampn.shinyapps.io/wgs2amr/. The stand-alone version of the predictor is available at https://github.com/pieterjanvc/wgs2amr/.

4.
Int J Mol Sci ; 21(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085478

RESUMO

Antimicrobial resistance (AMR) is a major health concern worldwide. A better understanding of the underlying molecular mechanisms is needed. Advances in whole genome sequencing and other high-throughput unbiased instrumental technologies to study the molecular pathogenicity of infectious diseases enable the accumulation of large amounts of data that are amenable to bioinformatic analysis and the discovery of new signatures of AMR. In this work, we review representative methods published in the past five years to define major approaches developed to-date in the understanding of AMR mechanisms. Advantages and limitations for applications of these methods in clinical laboratory testing and basic research are discussed.


Assuntos
Biologia Computacional/métodos , Farmacorresistência Bacteriana/genética , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Metabolômica
5.
Cell Rep ; 29(6): 1718-1727.e8, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693907

RESUMO

Methods for single-cell RNA sequencing (scRNA-seq) have greatly advanced in recent years. While droplet- and well-based methods have increased the capture frequency of cells for scRNA-seq, these technologies readily produce technical artifacts, such as doublet cell captures. Doublets occurring between distinct cell types can appear as hybrid scRNA-seq profiles, but do not have distinct transcriptomes from individual cell states. We introduce DoubletDecon, an approach that detects doublets with a combination of deconvolution analyses and the identification of unique cell-state gene expression. We demonstrate the ability of DoubletDecon to identify synthetic, mixed-species, genetic, and cell-hashing cell doublets from scRNA-seq datasets of varying cellular complexity with a high sensitivity relative to alternative approaches. Importantly, this algorithm prevents the prediction of valid mixed-lineage and transitional cell states as doublets by considering their unique gene expression. DoubletDecon has an easy-to-use graphical user interface and is compatible with diverse species and unsupervised population detection algorithms.


Assuntos
RNA-Seq/métodos , Análise de Célula Única/métodos , Algoritmos , Animais , Análise por Conglomerados , Bases de Dados Genéticas , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Sensibilidade e Especificidade , Razão Sinal-Ruído , Software , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...