Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(1): 75-82, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173604

RESUMO

Here we report a comparative study on the bottom-up synthesis of multi-element hydroxides composed of Mg, Al, Fe and Zn cations to understand the role of solvents. Two common solvents, water and ethylene glycol, a typical polyol, are used. The polyol-derived MgAlFeZn-OH are nanosheets with homogeneous elemental distribution, while the hydrothermal-derived MgAlFeZn-OH are mixtures of plate-like hydroxide layers and rod-like spinel oxides. The coordinating properties and the high viscosity of the ethylene glycol provide the possibility to mediate the hydrolysis rates and to control the particle growth. The high specific surface area of the polyol-derived multi-element hydroxide nanosheets (352.4 m2 g-1) guarantees them as excellent adsorbents for adsorbing anionic dyes in aqueous solution.

2.
RSC Adv ; 12(42): 27625-27632, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36276048

RESUMO

A gold nanoparticle-decorated graphene oxide (GO-AuNP) hybrid material was prepared by using the chemical reduction method. The obtained results showed that the AuNPs of about of 15 nm are well bound on the surface of GO. The GO-AuNP hybrid material was used for transparent conductive film (TCF) and organic/inorganic hybrid solar cells. The TCF based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) containing GO-AuNPs was fabricated at room temperature. The obtained results show that the TCF containing 0.5 wt% GO-AuNPs has a high transmittance of 69.7% at 550 nm, a low sheet resistance of 50.5 Ω â–¡-1 and a conductivity that increased to 3960 S cm-1, which is three times higher than those of the PEDOT:PSS and PEDOT:PSS/GO film. The power conversion efficiency (PCE) of the n-Si/PEDOT:PSS hybrid solar cell containing GO-AuNPs was 8.39% and is higher than pristine PEDOT:PSS (5.81%) and PEDOT:PSS/GO (7.58%). This is a result of the increased electrical conductivity and localized surface plasmon resonance of the PEDOT:PSS coating layer containing the GO-AuNP hybrid material.

3.
RSC Adv ; 12(17): 10514-10521, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35424997

RESUMO

Herein, the effect of nanostructured silicon and gold nanoparticles (AuNPs) on the power conversion efficiency (PCE) of an n-type silicon/poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (n-Si/PEDOT:PSS) hybrid solar cell was investigated. The Si surface modified with different nanostructures including Si nanopyramids (SiNPs), Si nanoholes (SiNHs) and Si nanowires (SiNWs) was utilized to improve light trapping and photo-carrier collection. The highest power conversion efficiency (PCE) of 8.15% was obtained with the hybrid solar cell employing SiNWs, which is about 8%, 20% and 40% higher compared to the devices using SiNHs, SiNPs and planar Si, respectively. The enhancement is attributed to the low reflectance of the SiNW structures and large PEDOT:PSS/Si interfacial area. In addition, the influence of AuNPs on the hybrid solar cell's performance was examined. The PCE of the SiNW/PEDOT:PSS hybrid solar cell with 0.5 wt% AuNP is 8.89%, which is ca. 9% higher than that of the device without AuNPs (8.15%). This is attributed to the increase in the electrical conductivity and localized surface plasmon resonance of the AuNP-incorporated PEDOT:PSS coating layer.

4.
Bull Environ Contam Toxicol ; 106(6): 1017-1023, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33743019

RESUMO

In this work, reduced graphene oxide/double-walled carbon nanotubes/octahedral-Fe3O4/chitosan composite material modified screen-printed gold electrodes (rGO/DWCNTs/Oct-Fe3O4/Cs/SPAuE) under inhibition of urease enzyme was developed for the determination of glyphosate (GLY). The electrochemical behaviors of GLY on these electrodes were evaluated by square wave voltammetry (SWV). With the electroactive surface area is 1.7 times higher than that of bare SPAuE, the rGO/DWCNTs/Oct-Fe3O4/Cs/SPAuE for detection of GLY shows a low detection limit (LOD) of ~ 0.08 ppb in a large concentration range of 0.1-1000 ppb. Moreover, it is also successfully applied to the determination of GLY in river water samples with recoveries and relative standard deviations (RSDs) from 98.7% to 106.9% and from 0.79% to 0.87%, respectively. The developed composite will probably provide an universal electrochemical sensing platform that is very promising for environmental monitoring.


Assuntos
Quitosana , Grafite , Nanotubos de Carbono , Técnicas Eletroquímicas , Eletrodos , Glicina/análogos & derivados , Limite de Detecção , Glifosato
5.
Glob Chall ; 4(9): 2000010, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32999734

RESUMO

Solar energy is considered as a potential alternative energy source. The solar cell is classified into three main types: i) solar cells based on bulk silicon materials (monocrystalline, polycrystalline), ii) thin-film solar cells (CIGS, CdTe, DSSC, etc.), and iii) solar cells based on nanostructures and nanomaterials. Nowadays, commercial solar cells are usually made by bulk silicon material, which requires not only high fabrication costs but also limited performance. In this study, the fabrication of high-performance solar cells based on hybrid structure of silicon nanowires/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/graphene (SiNW/PEDOT:PSS/Gr) is focused upon. SiNWs with different lengths of 125, 400, 800 nm, and 2 µm are fabricated by a metal-assisted chemical etching method, and their influence on the performance of the hybrid solar cells is studied and investigated. The experimental results indicate that the suitable SiNW length for the fabrication of the hybrid solar cells is about 400 nm and the best power conversion efficiency obtained is about 9.05%, which is about 2.1 times higher than that of the planar Si solar cell.

6.
Sci Rep ; 9(1): 5667, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952876

RESUMO

Gold nanoparticles (AuNPs) decorated CNTs are promising materials for photocatalytics and biosensors. However, the synthesis of AuNPs chemically linked to the walls of MWCNTs is challenging and toxic products such as thionylchloride (SOCl2) or [1-ethyl-3(dimethyl-amino) propyl] carbodiimide hydrochloride (EDAC) need to be used. This work reports a new approach to prepare gold nanoparticles decorated multiwalled carbon nanotubes (MWCNTs) by using cysteaminium chloride via the formation of a Zwitterionic acide-base bond. The grafting process consists of 3 mains steps: oxidation, thiolation and decoration of AuNPs on the surface of MWCNTs. The completion of each step has been verified out by both spectroscopic (Raman, UV-Vis, FT-IR) and Scanning Electron Miscroscopy (SEM). The chemical bonding states of synthesized products have been proven by X-ray photoelectron spectroscopy (XPS).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...