Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941210

RESUMO

Most commercial ankle-foot orthoses (AFOs) are passive structures that cannot modulate stiffness to assist with a diverse range of activities, such as stairs and ramps. It is sometimes possible to change the stiffness of passive AFOs through reassembly or benchtop adjustment, but they cannot change stiffness during use. Passive AFOs are also limited in their ankle mechanics and cannot replicate a biomimetic, nonlinear torque-angle relationship. Many research labs have developed ankle exoskeletons that show promise as viable alternatives to passive AFOs, but they face challenges with reliability, mass, and cost. Consequently, commercial translation has largely failed to date. Here we introduce the Variable Stiffness Orthosis (VSO), a quasi-passive variable stiffness ankle-foot orthosis that strikes a balance between powered and passive systems, in terms of mass, complexity, and onboard intelligence. The VSO has customizable torque-angle relationships via a cam transmission, and can make step-to-step stiffness adjustments via motorized reconfiguration of a spring support along a lead-screw. In this work, we introduce two versions: a nominal and a stiff prototype, which differ primarily in their mass and available stiffness levels. The available torque-angle relationships are measured on a custom dynamometer and closely match model predictions. The experimental results showed that the prototypes are capable of producing ankle stiffness coefficients between 9 - 330 Nm/rad.


Assuntos
Tornozelo , Órtoses do Pé , Humanos , Marcha , Reprodutibilidade dos Testes , Articulação do Tornozelo , Fenômenos Biomecânicos
2.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941264

RESUMO

Ankle propulsion is essential for efficient human walking. In recent years, several working principles have been investigated and applied to ankle-foot orthoses (AFOs) to enhance the work of the plantarflexor muscles and achieve proper propulsion during gait. Comparing the performance and effectiveness of different designs is difficult because researchers do not have a standardized set of criteria and procedures to follow. This leads to a wide range of tests being conducted, with variations in important factors such as walking speed and assistance provided, which greatly affect users' kinematics and kinetics. In this work, we investigate the possibilities and potential benefits of two of the most important design principles for supporting ankle propulsion with unpowered AFOs. To this end, we present and evaluate two AFO prototypes with springs parallel to the Achilles tendon based on: (i) a linear compression spring, and (ii) a customized leaf spring-cam transmission with a non-linear ankle torque-angle curve. The effects of both AFOs are reported for a case study with one healthy participant using both prototypes at two walking speeds under the same experimental conditions. Large reductions in muscular activity were found when the user received assistance, and ankle kinematics were influenced by the different assistance approaches. This case study was intended as a first step to provide insights on how two promising principles can passively support push-off during gait.


Assuntos
Tornozelo , Órtoses do Pé , Humanos , Marcha/fisiologia , Caminhada/fisiologia , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...