Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 63(3): 480-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22687423

RESUMO

This is the report from the "ECVAM-EFPIA workshop on 3T3 NRU Phototoxicity Test: Practical Experience and Implications for Phototoxicity Testing", jointly organized by ECVAM and EFPIA and held on the 25-27 October 2010 in Somma Lombardo, Italy. The European Centre for the Validation of Alternative Methods (ECVAM) was established in 1991 within the European Commission Joint Research, based on a Communication from the European Commission (1991). The main objective of ECVAM is to promote the scientific and regulatory acceptance of alternative methods which are of importance to the biosciences and which reduce, refine and replace the use of laboratory animals. The European Federation of Pharmaceuticals Industries and Association (EFPIA) represent the pharmaceutical industry operating in Europe. Through its direct membership of 31 national associations and 40 leading pharmaceutical companies, EFPIA is the voice on the EU scene of 2200 companies committed to researching, developing and bringing to patients new medicines that improve health and the quality of life around the world. The workshop, co-chaired by Joachim Kreysa (ECVAM) and Phil Wilcox (GSK, EFPIA) involved thirty-five experts from academia, regulatory authorities and industry, invited to contribute with their experiences in the field of phototoxicology. The main objectives of the workshop were: -to present 'in use' experience of the pharmaceutical industry with the 3T3 Neutral Red Uptake Phototoxicity Test (3T3 NRU-PT), -to discuss why it differs from the results in the original validation exercise, -to discuss technical issues and consider ways to improve the usability of the 3T3 NRU-PT for (non-topical) pharmaceuticals, e.g., by modifying the threshold of chemical light absorption to trigger photo-toxicological testing, and by modifying technical aspects of the assay, or adjusting the criteria used to classify a positive response. During the workshop, the assay methodology was reviewed by comparing the OECD Test Guideline (TG 432) with the protocols used in testing laboratories, data from EFPIA and JPMA 'surveys' were presented and possible reasons for the outcomes were discussed. Experts from cosmetics and pharmaceutical industries reported on their experience with the 3T3 NRU-PT and evidence was presented for phototoxic clinical symptoms that could be linked to certain relevant molecules. Brainstorming sessions discussed if the 3T3 NRU-PT needed to be improved and whether alternatives to the 3T3 NRU-PT exist. Finally, the viewpoint from EU and US regulators was presented. In the final session, the conclusions of the meeting were summarized, with action points. It was concluded that the 3T3 NRU-PT identifies phototoxicological hazards with a 100% sensitivity, and thus is accepted as the tier one test that correctly identifies the absence of phototoxic potential. Consequently, positive results in the 3T3 NRU-PT often do not translate into a clinical phototoxicity risk. Possible ways to improve the practical use of this assay include: (i) adaptation of changed UV/vis-absorption criteria as a means to reduce the number of materials tested, (ii) reduction of the highest concentration to be tested, and (iii) consideration of modifying the threshold criteria for the prediction of a positive call in the test.


Assuntos
Alternativas aos Testes com Animais/métodos , Dermatite Fototóxica , Vermelho Neutro/metabolismo , Fármacos Fotossensibilizantes/toxicidade , Testes de Toxicidade/métodos , Células 3T3 , Animais , Bioensaio/métodos , Qualidade de Produtos para o Consumidor , Cosméticos/toxicidade , Dermatite Fototóxica/etiologia , Indústria Farmacêutica , Camundongos , Espécies Reativas de Oxigênio/metabolismo
2.
J Pharmacol Exp Ther ; 338(1): 362-71, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21515814

RESUMO

In renal proximal tubule, multidrug resistance protein 2 (Mrp2) actively transports many organic anions into urine, including drugs and metabolic wastes. Upon exposure to nephrotoxicants or during endotoxemia, both Mrp2 activity and expression are up-regulated. This may result from induced de novo synthesis of Mrp2 or post-transcriptional events involving specific signaling pathways. Here, we investigated glucocorticoid signaling to Mrp2 in killifish renal proximal tubules, a model system in which transport activity can be measured using a fluorescent substrate and confocal imaging. Exposure of tubules to dexamethasone rapidly increased Mrp2-mediated fluorescein methotrexate transport. Other glucocorticoid receptor (GR) ligands, cortisol and triamcinolone acetonide, also stimulated Mrp2-mediated transport. The GR antagonist, mifepristone 17ß-hydroxy-11ß-[4-dimethylamino phenyl]-17α-[1-propynyl]estra-4,9-dien-3-one (RU486), abolished stimulation by all three ligands, whereas the mineralocorticoid receptor antagonist, spironolactone, was ineffective. Consistent with action through a nongenomic mechanism, dexamethasone stimulation of Mrp2-mediated transport was insensitive to cycloheximide and actinomycin D, and immunohistochemistry revealed no alterations in Mrp2 expression at the luminal membrane. (9S-(9α,10ß,12α))-2,3,9,10,11,12-hexahydro-10-hydroxy-10-(methoxycarbonyl)-9-methyl-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocin-1-one (K252a), an inhibitor of the tyrosine receptor kinase subfamily, reduced the dexamethasone effect, as did the specific hepatocyte growth factor receptor (c-Met) tyrosine kinase inhibitor, (2R)-1-[[5-[(Z)-[5-[[(2,6-dichlorophenyl)methyl]sulfonyl]-1,2-dihydro-2-oxo-3H-indol-3-ylidene]methyl]-2,4-dimethyl-1H-pyrrol-3-yl]carbonyl]-2-(1-pyrrolidinylmethyl)pyrrolidine (PHA-665752). Hepatocyte growth factor (HGF), an endogenous ligand for c-Met, stimulated Mrp2-mediated transport. This effect was reversed by PHA-665752 but not by RU486. Inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK 1/2) also abolished the effects of dexamethasone and HGF. Our results disclose a novel mechanism by which glucocorticoids acting through GR, c-Met, and MEK1/2 cause rapid, nongenomic stimulation of Mrp2-mediated transport in renal proximal tubules. This up-regulation may be nephroprotective, enhancing efflux of metabolic wastes and toxicants during cell and tissue stress.


Assuntos
Fundulidae , Glucocorticoides/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Animais , Linhagem Celular , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/agonistas , Fatores de Tempo
3.
Eur J Pharm Sci ; 30(1): 36-44, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17088052

RESUMO

The activity of P-glycoprotein (Pgp/MDR1/ABCB1) and multidrug resistance proteins (MRP/ABCC) influence the pharmacokinetics and bioavailability of many drugs. Few suitable cell lines for the study of drug transport exist. Additional non-human cell lines may help clarify species differences and contribute to the current knowledge of drug transport. The aim of the present study was to characterize three rat epithelial cell lines for transporter expression and activity. Transporter expression was assessed in intestinal IEC-6 and renal GERP and NRK-52E cells using RT-PCR and Western blot analysis. Pgp and Mrp transport activity were analyzed by measuring calcein accumulation and glutathione-S-bimane efflux, respectively. The three cell lines showed Pgp expression and Pgp-dependent transport, both decreasing with culture time after reaching confluency. Besides Pgp, cells expressed Mrp1, Mrp3, Mrp4, and Mrp5, while Mrp2 and Mrp6 were absent. In addition, they showed temperature- and Mrp-dependent efflux of glutathione-S-bimane. Exposure to a panel of different inhibitors showed that this efflux was probably mediated by Mrp4. In conclusion, the three rat epithelial cell lines investigated showed Pgp and Mrp expression and transport. Mrp dependent transport was most likely mediated by Mrp4. In future, these cell lines may be used as in vitro models to study drug transport.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Subfamília B de Transportador de Cassetes de Ligação de ATP/biossíntese , Células Epiteliais/metabolismo , Intestino Delgado/metabolismo , Túbulos Renais Proximais/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Intestino Delgado/citologia , Túbulos Renais Proximais/citologia , RNA Mensageiro/biossíntese , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Pharmacol Res ; 54(6): 429-35, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17000116

RESUMO

The hormone endothelin-1 (ET-1) is involved in many functions of the kidney and intestine. In addition to its vasoactive and proliferative effects, ET-1 is involved in the maintenance of water and salt balance, and in drug excretion by influencing the activity of different transporters in the epithelial cells of these two organs. To study ET-1 function and its role in pathophysiological processes in epithelial cells in vitro, we investigated ET-1 and ET-receptor expression and inducibility of ET-1 excretion by cytokines in three rat cell lines of intestinal (IEC-6) and renal (NRK-52E and GERP) origin. Immunocytochemistry showed that all three cell lines express ET-1 and the ET-A and ET-B receptor. ET-1 was expressed intracellularly, and also the ET-A receptor showed a punctate intracellular staining pattern. The ET-B receptor was localized in the membrane, which was confirmed by Western blot analysis. Real-time RT-PCR and ELISA showed that exposure of IEC-6 cells to the cytokines, interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNFalpha), induced ET-1 mRNA expression and excretion, while IL-2 was ineffective. In NRK-52E cells, IL-1beta and TNFalpha induced ET-1 excretion as well. In GERP cells, adequate measurement of cytokine effects on ET-1 excretion was not possible, since ET-1 excretion under non-stimulated conditions was around the lowest level of detection. In conclusion, we showed ET-1 and ET-receptor expression, and inducibility of ET-1 by cytokines in IEC-6, NRK-52E, and GERP cells. These rat intestinal and renal cell lines appear to be suitable for further characterisation of ET-1 function and its role in pathophysiological processes in epithelial cells.


Assuntos
Endotelina-1/biossíntese , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Rim/metabolismo , Receptores de Endotelina/biossíntese , Animais , Western Blotting , Linhagem Celular , Citocinas/biossíntese , Endotelina-1/genética , Endotelina-1/metabolismo , Imunofluorescência , Imuno-Histoquímica , Intestinos/citologia , Rim/citologia , RNA Mensageiro/biossíntese , Ratos , Receptores de Endotelina/genética , Receptores de Endotelina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Drug Metab Dispos ; 34(8): 1393-7, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16714375

RESUMO

Different gene-silencing methods, like antisense and short interfering RNA (siRNA), are widely used as experimental tools to inhibit gene expression. In the present study, the in vivo behavior of siRNA in rats and siRNA-mediated silencing of genes in the renal proximal tubule were investigated. To study the biodistribution of siRNA, rats were injected i.v. with radiolabeled siRNA or radiolabel alone (control), and scintigraphic images were acquired at different time intervals postinjection. The siRNA preferentially accumulated in the kidneys and was excreted in the urine. One hour after injection, the amount of siRNA present in both kidneys (1.7 +/- 0.3% of injected dose/g tissue) was on average 40 times higher than in other tissues (liver, brain, intestine, muscle, lung, spleen, and blood). Besides the biodistribution, the effect of siRNA on multidrug resistance protein isoform 2 (Mrp2/Abcc2, siRNAMrp2) in renal proximal tubules was investigated. Mrp2 function was assessed by measuring the excretion of its fluorescent substrate calcein in the isolated perfused rat kidney. Four days after administration, siRNAMrp2 reduced the urinary calcein excretion rate significantly (35% inhibition over the period 80-150 min of perfusion). This down-regulation was specific because another siRNA sequence directed against a different transporter in the proximal tubule, Mrp4 (Abcc4, siRNAMrp4), did not alter the Mrp2-mediated excretion of calcein. In conclusion, siRNA accumulates spontaneously in the kidney after i.v. injection, where it selectively suppresses gene function in the proximal tubules. Therefore, i.v. administered siRNA provides a novel experimental and potential therapeutic tool for gene silencing in the kidney.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Túbulos Renais Proximais/metabolismo , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/farmacocinética , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Animais Geneticamente Modificados , Fluoresceínas/metabolismo , Inativação Gênica/efeitos dos fármacos , Injeções Intravenosas , Rim/metabolismo , Masculino , Ratos , Ratos Wistar
6.
Drug Metab Rev ; 37(3): 443-71, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16257830

RESUMO

The reabsorptive and excretory capacity of the kidney has an important influence on the systemic concentration of drugs. Multidrug resistance proteins (MRP/ABCC) expressed in the kidney play a critical role in the tubular efflux of a wide variety of drugs and toxicants, and, in particular, of their negatively charged phase II metabolites. Nine structurally and functionally related MRP family members have been identified (MRP1-9), which differ from each other by their localization, expression levels, and substrate specificity. During altered physiological circumstances, adaptations in these transporters are required to avoid systemic toxicity as well as renal tubular damage. Key players in these events are hormones, protein kinases, nuclear receptors, and disease conditions, which all may affect transporter protein expression levels. This review discusses current knowledge on the renal characteristics of MRP1-9, with specific focus on their regulation.


Assuntos
Ânions/metabolismo , Rim/fisiologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Compostos Orgânicos/metabolismo , Animais , Ânions/química , Ânions/farmacologia , Humanos , Rim/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/classificação , Compostos Orgânicos/química , Compostos Orgânicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...